Skip to main content
Log in

Effective detection of tyrosinase by Keggin-type polyoxometalate-based electrochemical sensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Browning is an important factor affecting the quality of fruits and vegetables, and tyrosinase is recognized as a significant biomarker of browning. In this work, the detection effects of five Keggin-type polyoxometalates on tyrosinase were analyzed, and the detection effect of Na7PMo11NiO40 was the best. The electrochemical sensor based on Na7PMo11NiO40 was applied to the determination of tyrosinase with a rapid response (40 s), low detection limit (0.52 U·mL−1), high sensitivity (297.3 μA·mL·mg−1), wide linear detection range (3.76–27.68 U·mL−1), and high selectivity under the optimized conditions. Importantly, the applicability of the proposed sensor was explored in the detection of tyrosinase in freshly squeezed apple juice. The recoveries obtained were in the range of 98.3–101.1% (RSD < 5%). More interestingly, the molecular simulation showed more positively charged histidine residues, and van-der-Waals interactions may cause higher catalytic activity of the polyoxometalates (POMs) on tyrosinase. The active catalytic sites of POMs are mainly located in the polyacid unit rather than the transition metal ions. This work provides a promising new perspective for using polyoxometalates to detect tyrosinase in the field of clinical diagnosis, cosmetics, and food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Olivares C, Solano F (2009) New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res 22:750–760

    Article  CAS  Google Scholar 

  2. Lin L, Dong Y, Zhao H, Wen L et al (2011) Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra (MAXIM.) HARA as inhibitors of tyrosinase and α-glucosidase. Food Chem 129:884–889

    Article  CAS  Google Scholar 

  3. Liu BW, Huang PC, Li JF et al (2017) Colorimetric detection of tyrosinase during the synthesis of kojic acid/silver nanoparticles under illumination. Sens Actuators B Chem 251:836–841

    Article  CAS  Google Scholar 

  4. Wang ZQ, Hwang SH, Huang B et al (2015) Identification of tyrosinase specific inhibitors from Xanthium strumarium fruit extract using ultrafiltration-high performance liquid chromatography. J Chromatogr B 1002:319–328

    Article  CAS  Google Scholar 

  5. Yang Z, Zhang Y, Sun L et al (2012) An ultrafiltration high-performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterising tyrosinase inhibitors from mulberry leaves. Anal Chim Acta 719:87–95

    Article  CAS  Google Scholar 

  6. Zhang F, Xu L, Zhao Q et al (2018) Dopamine-modified Mn-doped ZnS quantum dots fluorescence probe for the sensitive detection of tyrosinase in serum samples and living cells imaging. Sens Actuators B Chem 256:1069–1077

    Article  CAS  Google Scholar 

  7. Yildiz HB, Freeman R, Gill R et al (2008) Electrochemical, photoelectrochemical, and piezoelectric analysis of tyrosinase activity by functionalized nanoparticles. Anal Chem 80:2811–2816

    Article  CAS  Google Scholar 

  8. Xia N, Zhang LP, Feng QQ et al (2013) Amplified voltammetric detection of tyrosinase and its activity with dopamine-gold nanoparticles as redox probes. Iin J Electrochem Sc 8:5487–5495

    CAS  Google Scholar 

  9. Yan K, Wu JN, Ji WH et al (2019) Integration of redox cycling in a photoelectrochemical sensing platform for tyrosinase activity evaluation. Electrochem Commun 108:106555

  10. Yan K, Ji WH, Zhu YH et al (2019) Photofuel cell coupling with redox cycling as highly sensitive and selective self-powered sensing platform for detection of tyrosinase activity. Chem Commun 55:12040–12043

    Article  CAS  Google Scholar 

  11. Long DL, Tsunashima R, Cronin L (2010) Polyoxometalates: building blocks for functional nanoscale systems. Angew Chem Int Ed Engl 49:1736–1758

    Article  CAS  Google Scholar 

  12. Han XB, Tang XY, Lin Y et al (2018) Ultra-small abundant metal-based clusters as oxygen-evolving catalysts. J Am Chem Soc 141:232–239

    Article  Google Scholar 

  13. Zoladek S, Rutkowska IA, Blicharska M et al (2016) Enhancement of oxygen reduction at Co-porphyrin catalyst by supporting onto hybrid multi-layered film of polypyrrole and polyoxometalate-modified gold nanoparticles. J Solid State Electr 20:1199–1208

    Article  CAS  Google Scholar 

  14. Buru CT, Platero-Prats AE, Chica DG et al (2018) Thermally induced migration of a polyoxometalate within a metal-organic framework and its catalytic effects. J Mater Chem A Mater 6:7389–7394

    Article  CAS  Google Scholar 

  15. Ma M, Gao N, Sun Y et al (2018) Redox-activated near-infrared-responsive polyoxometalates used for photothermal treatment of alzheimer's disease. Adv Healthc Mater 1800320

  16. Mukhopadhyay S, Debgupta J, Singh C et al (2018) A keggin polyoxometalate shows water oxidation activity at neutral pH: POM@ ZIF-8, an efficient and robust electrocatalyst. Angew Chem Int Ed Engl 57:1918–1923

    Article  CAS  Google Scholar 

  17. An D, Chen Z, Zheng J et al (2016) Polyoxomatelate functionalized tris (2, 2-bipyridyl) dichlororuthenium (II) as the probe for electrochemiluminescence sensing of histamine. Food Chem 194:966–971

    Article  CAS  Google Scholar 

  18. Liu YW, Yang X, Miao J et al (2014) Polyoxometalate-functionalized metal-organic frameworks with improved water retention and uniform proton-conducting pathways in threeorthogonal directions. Chem Commun 50(70):10023–10026

    Article  CAS  Google Scholar 

  19. Skunik M, Baranowska B, Fattakhova D et al (2006) Electrochemical charging and electrocatalysis at hybrid films of polymer-interconnected polyoxometallate-stabilized carbon submicroparticles. J Solid State Electr 10:168–175

    Article  CAS  Google Scholar 

  20. Huang BQ, Wang L, Shi K et al (2008) A new strategy for the fabrication of the phosphor polyoxomolybdate modified electrode from ionic liquid solutions and its electrocatalytic activities. J Electroanal Chem 615:19–24

    Article  CAS  Google Scholar 

  21. Albo Y, Burg A, Shamir D et al (2017) Bromate reduction by an electron exchange column. Chem Eng J 330:419–422

    Article  Google Scholar 

  22. Wang L, Feng ZG, Cai HN (2009) A general strategy for the preparation of polyoxometalate coordination polymer modified electrodes via an ionic liquid route and their electrocatalytic activities. J Electroanal Chem 636:36–39

    Article  CAS  Google Scholar 

  23. Boussema F, Gross AJ, Hmida F et al (2009) Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. Biosens Bioelectron 109:20–26

    Article  Google Scholar 

  24. Sun M, Li F, Yu L et al (2016) Synthesis of [Sb2W20FeII2(H2O)6O70]10- with iron powder under mild conditions and its applications in both catalytic Fenton reaction and electrochemical sensing of ascorbic acid. Dalton Trans 45:2417–2421

    Article  CAS  Google Scholar 

  25. Wang L, Xu L, Sun Z et al (2013) Improving TiO2 photoanodes through silver-polyoxotungstate nanohybrids: toward photovoltaic and photoelectrocatalytic application. RSC Adv 3:21811–21816

    Article  CAS  Google Scholar 

  26. Xing R, Wang F, Zheng AP et al (2016) Biological evaluation of two Keggin-type polyoxometalates containing glycine as mushroom tyrosinase inhibitors. Biotechnol Appl Biochem 63(5):746–750

    Article  CAS  Google Scholar 

  27. Xing R, Wang F, Dong L et al (2016) Inhibitory effects of Na7PMo11CuO40 on mushroom tyrosinase and melanin formation and its antimicrobial activities. Food Chem 197:205–211

    Article  CAS  Google Scholar 

  28. Han Z, Wang E, Luan G et al (2002) Synthesis, properties and structural characterization of an intermolecular photosensitive complex: (HGly-Gly)3PMo12O40·4H2O. J Mater Chem 12:1169–1173

    Article  CAS  Google Scholar 

  29. Mazari T, Marchal CR, Hocine S et al (2009) Oxidation of propane over substituted Keggin phosphomolybdate salts. J Energy Chem 18:319–324

    CAS  Google Scholar 

  30. Bi LH, Kortz U, Nellutla S et al (2005) Structure, electrochemistry, and magnetism of the iron (III)-substituted Keggin dimer, [Fe6 (OH)3(A-α-GeW9O34(OH)3)2]11-. Inorg Chem 44:896–903

    Article  CAS  Google Scholar 

  31. Elsayed BA, Ibrahem IA, Attia MS et al (2016) Highly sensitive spectrofluorimetric analysis and Molecular Docking using benzocoumarin hydrazide derivative doped in sol-gel matrix as optical sensor. Sens Actuators B Chem 232:642–652

    Article  CAS  Google Scholar 

  32. Chi G, Qi Y, Li J et al (2019) Polyoxomolybdates as α-glucosidase inhibitors: Kinetic and molecular modeling studies. J Inorg Biochem 193:173–179

    Article  CAS  Google Scholar 

  33. Scholz C, Knorr S, Hamacher K et al (2015) DOCKTITE-a highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment. J Chem Inf Model 55:398–406

    Article  CAS  Google Scholar 

  34. Ismaya WT, Rozeboom HJ, Weijn A et al (2011) Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry 50:5477–5486

    Article  CAS  Google Scholar 

  35. Chi G, Wang L, Chen B et al (2019) Polyoxometalates: Study of inhibitory kinetics and mechanism against α-glucosidase. J Inorg Biochem 199:110784

  36. Ali M, Khan KM, Salar U et al (2018) Synthesis, in vitro α-glucosidase inhibitory activity, and in silico study of (E)-thiosemicarbazones and (E)-2-(2-(arylmethylene)hydrazinyl)-4-arylthiazole derivatives. Mol Divers 22(4):841–861

    Article  CAS  Google Scholar 

  37. Guo WH, Xu L, Xu BB et al (2009) A modified composite film electrode of polyoxometalate/carbon nanotubes and its electrocatalytic reduction. J Appl Electrochem 39(5):647–652

    Article  CAS  Google Scholar 

  38. Pope MT, Jeannin Y, Fournier M (1983) Heteropoly and isopoly oxometalates. Berlin: Springer-Verlag 8

  39. Song W, Chen X, Jiang Y (1999) Fabrication of a chemically modified electrode containing 12-molybdophosphoric acid by the sol-gel technique and its application as an amperometric detector for iodate. Anal Chim Acta 394:73–80

    Article  CAS  Google Scholar 

  40. Zhang L, Ning L, Zhang Z et al (2015) Fabrication and electrochemical determination of L-cysteine of a composite film based on V-substituted polyoxometalates and Au@2Ag core-shell nanoparticles. Sens Actuators B Chem 221:28–36

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21871110) and the Natural Science Foundation of Fujian Province (Grant No. 2020J01674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Chen, X., Wang, L. et al. Effective detection of tyrosinase by Keggin-type polyoxometalate-based electrochemical sensor. J Solid State Electrochem 26, 419–429 (2022). https://doi.org/10.1007/s10008-021-05085-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05085-8

Keywords

Navigation