Skip to main content
Log in

Pt-Ni alloy catalyst supported on carbon aerogel via one-step method for oxygen reduction reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-supported platinum-nickel alloy catalysts have become one of the main choices of proton exchange membrane fuel cells (PEMFCs) due to the high catalytic activity toward oxygen reduction reaction (ORR). In this work, carbon aerogel supported platinum-nickel solid solution alloy catalysts (Pt3Ni/CA) with small particles (~ 3.5 nm) and uniform distribution were prepared via a simple one-step rapid reduction method during which no structure guide or stabilizer is added. In rotating disk electrode (RDE), the mass activity (MA, 0.25 A mgPt−1) and specific activity (SA, 4.69 A m−2) of the optimized Pt3Ni/CA catalysts for ORR are nearly 3.8 times and 6.5 times that of the state-of-the-art commercial carbon-supported platinum catalysts (Pt/C, 0.07 A mgPt−1 and 0.72 A m−2), respectively. After the accelerated durability test (ADT), the as-prepared Pt3Ni/CA catalysts still keep a satisfactory MA and SA which are more than 3.4 and 8.9 times as high as that of Pt/C. The Koutecký-Levich (K-L) equation shows that the electrochemical reaction conforms to be a 4e process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hosseini MG, Rashidi N, Mahmoodi R, Omer M (2018) Preparation of Pt/G and PtNi/G nanocatalysts with high electrocatalytic activity for borohydride oxidation and investigation of different operation condition on the performance of direct borohydride-hydrogen peroxide fuel cell. Mater Chem Phys 208:207–219

    Article  CAS  Google Scholar 

  2. Shao Q, Li F, Chen Y, & Huang X (2018) The advanced designs of high-performance platinum-based electrocatalysts: recent progresses and challenges. Adv Mater Interfaces 5(16)

  3. Wang J, Zhou X, Li B, Yang D, Lv H, Xiao Q, Ming P, Wei X, Zhang C (2020) Highly efficient, cell reversal resistant PEMFC based on PtNi/C octahedral and OER composite catalyst. Int J Hydrogen Energy 45(15):8930–8940

    Article  CAS  Google Scholar 

  4. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen Reduction on Carbon-Supported Pt−Ni and Pt−Co Alloy Catalysts. J Phys Chem B 106(16):4181–4191

    Article  CAS  Google Scholar 

  5. Nassr ABAA, Sinev I, Grünert W, Bron M (2013) PtNi supported on oxygen functionalized carbon nanotubes: In depth structural characterization and activity for methanol electrooxidation. Appl Catal B 142–143:849–860

    Article  Google Scholar 

  6. Kang YS, Jung JY, Choi D, Sohn Y, Lee SH, Lee KS, Kim ND, Kim P, Yoo SJ (2020) Formation mechanism and gram-scale production of PtNi hollow nanoparticles for oxygen electrocatalysis through in-situ galvanic displacement reaction. ACS Appl Mater Interfaces 12(14):16286–16297

    Article  CAS  Google Scholar 

  7. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces a selective review. Fuel Cell 1(2)

  8. Takai A, Saida T, Sugimoto W, Wang L, Yamauchi Y, Kuroda K (2009) Preparation of mesoporous Pt−Ru alloy fibers with tunable compositions via evaporation-mediated direct templating (EDIT) method utilizing porous anodic alumina membranes. Chem Mater 21(14):3414–3423

    Article  CAS  Google Scholar 

  9. Stassi A, Gatto I, Baglio V, Passalacqua E, Arico AS (2013) Investigation of Pd-based electrocatalysts for oxygen reduction in PEMFCs operating under automotive conditions. J Power Sources 222:390–399

    Article  CAS  Google Scholar 

  10. Daş E, Alkan Gürsel S, Bayrakçeken Yurtcan A (2020) Pt-alloy decorated graphene as an efficient electrocatalyst for PEM fuel cell reactions. J Supercrit Fluids 165

  11. Nadeem M, Yasin G, Moazzam B, Mehmood M, Arif M, Dai L (2018) Pt-M bimetallic nanoparticles (M = Ni, Cu, Er) supported on metal organic framework-derived N-doped nanostructured carbon for hydrogen evolution and oxygen evolution reaction. J Power Sources 402:34–42

    Article  CAS  Google Scholar 

  12. Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang YM, Duan X, Mueller T, Huang Y (2015) High-performance transition metal-doped Pt(3)Ni octahedra for oxygen reduction reaction. Science 348(6240):1230–1234

    Article  CAS  Google Scholar 

  13. Antolini E, Salgado JRC, Gonzalez ER (2006) The stability of Pt–M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells. J Power Sources 160(2):957–968

    Article  CAS  Google Scholar 

  14. Tasic GS, Miljanic SS, Marceta Kaninski MP, Saponjic DP, Nikolic VM (2009) Non-noble metal catalyst for a future Pt free PEMFC. Electrochem Commun 11(11):2097–2100

    Article  CAS  Google Scholar 

  15. Yu P, Pemberton M, Plasse P (2005) PtCo/C cathode catalyst for improved durability in PEMFCs. J Power Sources 144(1):11–20

    Article  CAS  Google Scholar 

  16. Kepenienė V, Stagniūnaitė R, Tamašauskaitė-Tamašiūnaitė L, Pakštas V, Norkus E (2018) PtCoNb2 O5/graphene as electrocatalyst towards oxygen reduction reaction in alkaline and acidic media. Chemija 29:41–48

  17. Campos-Roldán CA, Alonso-Vante N (2020) Understanding the oxophilic effect on the hydrogen electrode reaction through PtM nanostructures. J Solid State Electrochem

  18. Ling L-L, Liu W-J, Chen S-Q, Hu X, Jiang H (2018) MOF templated nitrogen doped carbon stabilized Pt–Co bimetallic nanoparticles: low Pt content and robust activity toward electrocatalytic oxygen reduction reaction. ACS Applied Nano Materials 1(7):3331–3338

    Article  CAS  Google Scholar 

  19. Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3(3):306–314

    Article  CAS  Google Scholar 

  20. Liu Z, Ma L, Zhang J, Hongsirikarn K, Goodwin JG (2013) Pt alloy electrocatalysts for proton exchange membrane fuel cells: a review. Catalysis Reviews 55(3):255–288

    Article  CAS  Google Scholar 

  21. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt−Ni and Pt−Co alloy catalysts. J Phys Chem B 106:4181–4191

    Article  CAS  Google Scholar 

  22. Şavk A, Aydın H, Cellat K, Şen F (2020) A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite. J Mol Liq 300

  23. Teng X, Shan A, Zhu Y, Wang R, Lau W-M (2020) Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon. Electrochim Acta 353

  24. Zhao X, Takao S, Higashi K, Kaneko T, Samjeske G, Sekizawa O, Sakata T, Yoshida Y, Uruga T, Iwasawa Y (2017) Simultaneous improvements in performance and durability of an octahedral PtNix/C electrocatalyst for next-generation fuel cells by continuous, compressive, and concave Pt skin layers. ACS Catal 7(7):4642–4654

    Article  CAS  Google Scholar 

  25. Du Z, Wang Y, Li J, Liu J (2019) Facile fabrication of Pt–Ni alloy nanoparticles supported on reduced graphene oxide as excellent electrocatalysts for hydrogen evolution reaction in alkaline environment. J Nanopart Res 21(1)

  26. Bak J, Heo Y, Yun TG, Chung SY (2020) Atomic-level manipulations in oxides and alloys for electrocatalysis of oxygen evolution and reduction. ACS Nano 14(11):14323–14354

    Article  Google Scholar 

  27. Tian X, Zhao X, Su Y-Q, Wang L, Wang H, Dang D, Chi B, Liu H, Hensen EJM, Lou XWD, Xia BY (2019) Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science

    Book  Google Scholar 

  28. Liu Y, Chen H, Tian C, Geng D, Wang D, Bai S (2019) One-pot synthesis of highly efficient carbon-supported polyhedral Pt3Ni alloy nanoparticles for oxygen reduction reaction. Electrocatalysis 10(6):613–620

    Article  CAS  Google Scholar 

  29. Maity DK, Bhattacharya B, Mondal R, Ghoshal D (2014) Five diverse bivalent metal coordination polymers based on benzene dicarboxylate and bent dipyridyl ligands syntheses, structures, and photoluminescent properties. CrystEngComm 16:8896

    Article  CAS  Google Scholar 

  30. Santos LGRA, Oliveira CHF, Moraes IR, Ticianelli EA (2006) oxygen reduction reaction in acid medium on Pt–Ni/C prepared by a microemulsion method. J Electroanal Chem 596(2):141–148

    Article  CAS  Google Scholar 

  31. Wang Y, Chen S, Wang X, Rosen A, Beatrez W, Sztaberek L, Tan H, Zhang L, Koenigsmann C, Zhao J (2020) Composition-dependent oxygen reduction reaction activity of Pt-surfaced PtNi dodecahedral nanoframes. ACS Appl Energy Mater 3(1):768–776

    Article  CAS  Google Scholar 

  32. Kumar A, Yang X, Xu Q (2019) Ultrafine bimetallic Pt–Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: a highly efficient catalyst for dehydrogenation of hydrous hydrazine. J Mater Chem A 7(1):112–115

    Article  CAS  Google Scholar 

  33. Mayrhofer KJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 109(30):14433–14440

    Article  CAS  Google Scholar 

  34. Taniguchi K, Shinoda K, Cuya Huaman J L, Yokoyama S, Uchikoshi M, Matsumoto T, Suzuki K, Miyamura H, Jeyadevan B (2018) Designed synthesis of highly catalytic Ni–Pt nanoparticles for fuel cell applications. SN Appl Sci 1(1)

  35. Li Z, Han C, Shen J (2006) Reduction of Ni2+ by hydrazine in solution for the preparation of nickel nano-particles. J Mater Sci 41(11):3473–3480

    Article  CAS  Google Scholar 

  36. Yang J, Ning G, Yu L, Wang Y, Luan C, Fan A, Zhang X, Liu Y, Dong Y, Dai X (2019) Morphology controllable synthesis of PtNi concave nanocubes enclosed by high-index facets supported on porous graphene for enhanced hydrogen evolution reaction. J Mater Chem A 7(30):17790–17796

    Article  CAS  Google Scholar 

  37. Zou L, Fan J, Zhou Y, Wang C, Li J, Zou Z, Yang H (2015) Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res 8(8):2777–2788

    Article  CAS  Google Scholar 

  38. Yano H, Song JM, Uchida H, Watanabe M (2008) Temperature dependence of oxygen reduction activity at carbon-supported PtXCo (X =1, 2, and 3) alloy catalysts prepared by the nanocapsule method. J Phys Chem B 112:8372–8380

    CAS  Google Scholar 

  39. Su L, Luo Z-H, Wu J-K, Zeng M, Xiao Y-W, Wang C-Y, Yi Y (2020) Reverse microemulsion synthesis of mesopore phloroglucinol-resorcinol-formaldehyde carbon aerogel microsphere as nano-platinum catalyst support for ORR. ChemistrySelect 5:538–541

    Article  CAS  Google Scholar 

  40. Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C-j (2017) A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J Mater Chem A 5(5):1808–1825

    Article  CAS  Google Scholar 

  41. Zeng M, Wang CY, Su L, Luo ZH, Wu JK, Yi Y (2020) Nano-platinum catalysts supported by carbon aerogel microsphere with adjustable pore size tuned by PEG-200 for oxygen reduction reaction. ChemistrySelect 5(29):9296–9300

    Article  CAS  Google Scholar 

  42. Kosimaningrum WE, Le T-X-H, Holade Y, Bechelany M, Tingry S, Buchari B, Noviandri I, Innocent C, Cretin M (2017) Surfactant- and binder-free hierarchical platinum nanoarrays directly grown onto a carbon felt electrode for efficient electrocatalysis. ACS Appl Mater Interfaces 9(27)

  43. Antolini E, Salgado JRC, Gonzalez ER (2006) The methanol oxidation reaction on platinum alloys with the first row transition metals the case of Pt–Co and –Ni alloy electrocatalysts for DMFCs: a short review. Appl Catal B 63(1–2):137–149

    Article  CAS  Google Scholar 

  44. Hu Y, Wu P, Yin Y, Zhang H, Cai C (2012) Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl Catal B 111–112:208–217

    Article  Google Scholar 

  45. Hu C, Cao Y, Yang L, Bai Z, Guo Y, Wang K, Xu P, zhou J, (2011) Preparation of highly dispersed Pt-SnOx nanoparticles supported on multi-walled carbon nanotubes for methanol oxidation. Appl Surf Sci 257(18):7968–7974

    Article  CAS  Google Scholar 

  46. Liu Y, Li Q, Si R, Li G D, Li W, Liu D P, Wang D, Sun L, Zhang Y, Zou X (2017) Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Adv Mater 29(13)

  47. Zhao X, Takao S, Higashi K, Kaneko T, Samjeské G, Sekizawa O, Sakata T, Yoshida Y, Uruga T, Iwasawa Y (2017) Simultaneous improvements of performance and durability of an octahedral PtNix/C electrocatalyst for next–generation fuel cells by continuous, compressive and concave Pt skin layers. ACS Catal 7:4642–4654

    Article  CAS  Google Scholar 

  48. Chiwata M, Yano H, Ogawa S, Watanabe M, Iiyama A, Uchida H (2016) Oxygen reduction reaction activity of carbon-supported Pt-Fe, Pt-Co, and Pt-Ni alloys with stabilized Pt-skin layers. Electrochemistry 84(3):133–137

    Article  CAS  Google Scholar 

  49. Park K-W, Choi J-H, Kwon B-K, Lee S-A, Sung Y-E (2002) Chemical and electronic effects of Ni in PtNi and PtRuNi alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106(8):1869–1877

    Article  CAS  Google Scholar 

  50. Song F, Li W, Yang J, Han G, Liao P, Sun Y (2018) Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat Commun 9(1):4531

    Article  Google Scholar 

  51. Khan Z, Senthilkumar B, Park SO, Park S, Yang J, Lee JH, Song H-K, Kim Y, Kwak SK, Ko H (2017) Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na–air battery. J Mater Chem A 5(5):2037–2044

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Project of State Key Laboratory of Environment-friendly Energy Materials, the open research fund program of science and technology on aerospace chemical power laboratory (STACPL12018B05-1), the National Natural Science Foundation of China (21875061), Southwest University of Science and Technology (No.18fksy0203,19fksy08), and the Foundation of Science and Technology on plasma physics Laboratory of China Academy of Engineering physics.

Author information

Authors and Affiliations

Authors

Contributions

Jiang Li–Li: conceptualization, methodology, investigation, and writing—original draft. Zeng Min: constructive discussions, conception, and design. Wang Chao-Yang: data curation and validation. Luo Zhi-Hui: resources, writing—review and editing. Li Hai-Yang: software. Xiao Yu-Wei: review. Yi Yong: supervision, formal analysis and financial support.

Corresponding author

Correspondence to Yong Yi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2121 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, LL., Zeng, M., Wang, CY. et al. Pt-Ni alloy catalyst supported on carbon aerogel via one-step method for oxygen reduction reaction. J Solid State Electrochem 26, 481–490 (2022). https://doi.org/10.1007/s10008-021-05082-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05082-x

Keywords

Navigation