Skip to main content
Log in

Synergistic air electrode combining carbon nanotube tissue and fluorinated graphite material in hybrid nonaqueous aluminum batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In a typical Al–air battery, the air cathode functions as a deposition substrate for discharge products while allowing O2 entrance. Herein, we present an air electrode that simultaneously allows two discharge processes. The function of the metal–air battery is enabled by using porous carbon nanotube (CNT)-based tissue substrates. In contrast, the fluorinated graphite (CFx) coating on the CNT substrate provides an additional discharge process, enhancing discharge capacity. Two CFx loadings are investigated, and their performances are compared with that of a pristine CNT tissue. Electrochemical evaluations, including half- and full-cell measurements, are performed to examine the effect of the coating layer thickness on the ability of the cell to function at high discharge rates. High CFx loadings improved the cell performance and increased discharge capacities (an increase of ~ 3 mAh cm−2 for the 0.1 mA cm−2 and ~ 5 mAh cm−2 for the 0.25 mA cm−2 evaluations) until reaching high discharge loads. When applying 0.5 mA cm−2, the additional layer restricts O2 access into the cell, preventing the metal–air battery from functioning as intended. High-resolution scanning electron microscopy and energy-dispersive X-ray spectroscopy are used to characterize the discharge products deposited on this unique electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li C, Zhang X, He W (2018) Design and modification of cathode materials for high energy density aluminum-ion batteries: a review. J Mater Sci Mater Electron 29:14353–14370. https://doi.org/10.1007/s10854-018-9478-1

    Article  CAS  Google Scholar 

  2. Levy NR, Ein-Eli Y (2020) Aluminum-ion battery technology: a rising star or a devastating fall? J Solid State Electrochem 24:2067–2071. https://doi.org/10.1007/s10008-020-04598-y

    Article  CAS  Google Scholar 

  3. Elia GA, Marquardt K, Hoeppner K et al (2016) An overview and future perspectives of aluminum batteries. Adv Mater 28:7564–7579. https://doi.org/10.1002/adma.201601357

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Sun Q, Li W et al (2017) A comprehensive review on recent progress in aluminum-air batteries. Green Energy Environ 2:246–277. https://doi.org/10.1016/j.gee.2017.06.006

  5. Yang H, Yin L, Liang J et al (2018) An aluminum-sulfur battery with a fast kinetic response. Angew Chemie Int Ed 57:1898–1902. https://doi.org/10.1002/anie.201711328

    Article  CAS  Google Scholar 

  6. Leisegang T, Meutzner F, Zschornak M et al (2019) The aluminum-ion battery: a sustainable and seminal concept? Front Chem 7:268. https://doi.org/10.3389/fchem.2019.00268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohn G, Ma L, Archer LA (2015) A novel non-aqueous aluminum sulfur battery. J Power Sources 283:416–422. https://doi.org/10.1016/j.jpowsour.2015.02.131

    Article  CAS  Google Scholar 

  8. Tian H, Zhang S, Meng Z et al (2017) Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett 2:1170–1176. https://doi.org/10.1021/acsenergylett.7b00160

    Article  CAS  Google Scholar 

  9. Zhang S, Tan X, Meng Z et al (2018) Naturally abundant high-performance rechargeable aluminum/iodine batteries based on conversion reaction chemistry. J Mater Chem A 6:9984–9996. https://doi.org/10.1039/c8ta00675j

    Article  CAS  Google Scholar 

  10. Levy NR, Auinat M, Ein-Eli Y (2018) Tetra-butyl ammonium fluoride – an advanced activator of aluminum surfaces in organic electrolytes for aluminum-air batteries. Energy Storage Mater 15:465–474. https://doi.org/10.1016/j.ensm.2018.08.025

    Article  Google Scholar 

  11. Levy NR, Lifshits S, Yohanan E, Ein-Eli Y (2020) Hybrid ionic liquid propylene carbonate-based electrolytes for aluminum−air batteries. ACS Appl Energy Mater 3:2585–2592. https://doi.org/10.1021/acsaem.9b02288

    Article  CAS  Google Scholar 

  12. Elia GA, Hasa I, Greco G et al (2017) Insights into the reversibility of aluminum graphite batteries. J Mater Chem A 5:9682–9690. https://doi.org/10.1039/c7ta01018d

    Article  CAS  Google Scholar 

  13. Lee B, Lee HR, Yim T et al (2016) Investigation on the structural evolutions during the insertion of aluminum ions into Mo6S8 Chevrel phase. J Electrochem Soc 163:A1070–A1076. https://doi.org/10.1149/2.0011607jes

    Article  CAS  Google Scholar 

  14. Wang H, Bai Y, Chen S et al (2015) Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7:80–84. https://doi.org/10.1021/am508001h

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Yang H, Sun Z et al (2019) A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries. Nano Energy 56:100–108. https://doi.org/10.1016/j.nanoen.2018.11.045

    Article  CAS  Google Scholar 

  16. Gelman D, Shvartsev B, Ein-Eli Y (2014) Aluminum–air battery based on an ionic liquid electrolyte. J Mater Chem A 2:20237–20242. https://doi.org/10.1039/C4TA04721D

    Article  CAS  Google Scholar 

  17. Mori R (2020) Recent developments for aluminum–air batteries. Electrochem Energy Rev 3:344–369. https://doi.org/10.1007/s41918-020-00065-4

    Article  CAS  Google Scholar 

  18. Faegh E, Ng B, Hayman D, Mustain WE (2021) Practical assessment of the performance of aluminium battery technologies. Nat Energy 6:21–29. https://doi.org/10.1038/s41560-020-00728-y

    Article  CAS  Google Scholar 

  19. Buckingham R, Asset T, Atanassov P (2021) Aluminum-air batteries: a review of alloys, electrolytes and design. J Power Sources 498:229762. https://doi.org/10.1016/j.jpowsour.2021.229762

    Article  CAS  Google Scholar 

  20. Gelman D, Shvartsev B, Wallwater I et al (2017) An aluminum - ionic liquid interface sustaining a durable Al-air battery. J Power Sources 364:110–120. https://doi.org/10.1016/j.jpowsour.2017.08.014

    Article  CAS  Google Scholar 

  21. Li Y, Lu J (2017) Metal−air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett 2:1370–1377. https://doi.org/10.1021/acsenergylett.7b00119

    Article  CAS  Google Scholar 

  22. Balaish M, Kraytsberg A, Ein-eli Y (2014) Realization of an artificial three-phase reaction zone in a Li – air battery. ChemElectroChem 1:90–94. https://doi.org/10.1002/celc.201300055

    Article  CAS  Google Scholar 

  23. Balaish M, Ein-Eli Y (2017) Enhancing oxygen adsorption capabilities in Li–O 2 battery cathodes through solid perfluorocarbons. J Mater Chem A 5:14152–14162. https://doi.org/10.1039/c7ta03376a

    Article  CAS  Google Scholar 

  24. Zhang X, Jiao S, Tu J et al (2019) Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ Sci 12:1918–1927. https://doi.org/10.1039/c9ee00862d

    Article  CAS  Google Scholar 

  25. Song Y, Jiao S, Tu J et al (2017) A long-life rechargeable Al ion battery based on molten salts. J Mater Chem A 5:1282–1291. https://doi.org/10.1039/c6ta09829k

    Article  CAS  Google Scholar 

  26. Sun H, Wang W, Yu Z et al (2015) A new aluminium-ion battery with high voltage, high safety and low cost. Chem Commun 51:11892–11895. https://doi.org/10.1039/c5cc00542f

    Article  CAS  Google Scholar 

  27. Levitin G, Yarnitzky C, Licht S (2002) Fluorinated graphites as energetic cathodes for nonaqueous Al batteries. Electrochem Solid-State Lett 5:A160–A163. https://doi.org/10.1149/1.1481797͔

    Article  CAS  Google Scholar 

  28. Rani JV, Kanakaiah V, Dadmal T et al (2013) Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery. J Electrochem Soc 160:A1781–A1784. https://doi.org/10.1149/2.072310jes

    Article  CAS  Google Scholar 

  29. Wang D-Y, Wei C-Y, Lin M-C et al (2017) Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat Commun 8:14283. https://doi.org/10.1038/ncomms14283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vatsala Rani J, Kanakaiah V, Dadmal T et al (2013) Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery. J Electrochem Soc 160:A1781–A1784. https://doi.org/10.1149/2.072310jes

    Article  CAS  Google Scholar 

  31. Rangasamy E, Li J, Sahu G et al (2014) Pushing the theoretical limit of Li-CF x batteries: a tale of bifunctional electrolyte. J Am Soc 136:6874–6877. https://doi.org/10.1021/ja5026358

    Article  CAS  Google Scholar 

  32. Zhang Q, Takeuchi KJ, Takeuchi ES, Marschilok AC (2015) Progress towards high-power Li/CFx batteries: electrode architectures using carbon nanotubes with CFx. Phys Chem Chem Phys 17:22504–22518. https://doi.org/10.1039/c5cp03217b

    Article  CAS  PubMed  Google Scholar 

  33. Sharma N, Dubois M, Guérin K et al (2021) Fluorinated (nano)carbons: CFx electrodes and CFx-based batteries. Energy Technol 9:2000605. https://doi.org/10.1002/ente.202000605

    Article  CAS  Google Scholar 

  34. Jörissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155:23–32. https://doi.org/10.1016/j.jpowsour.2005.07.038

    Article  CAS  Google Scholar 

  35. Shvartsev B, Gelman D, Amram D, Ein-Eli Y (2015) Phenomenological transition of an aluminum surface in an ionic liquid and its beneficial implementation in batteries. Langmuir 31:13860–13866. https://doi.org/10.1021/acs.langmuir.5b03362

    Article  CAS  PubMed  Google Scholar 

  36. Cohn G, Ein-Eli Y (2010) Study and development of non-aqueous silicon-air battery. J Power Sources 195:4963–4970. https://doi.org/10.1016/j.jpowsour.2010.02.070

    Article  CAS  Google Scholar 

  37. Fang Z-Q, Hu M, Liu W-X et al (2006) Preparation and electrochemical property of three-phase gas-diffusion oxygen electrodes for metal air battery. Electrochim Acta 51:5654–5659. https://doi.org/10.1016/j.electacta.2006.01.056

    Article  CAS  Google Scholar 

  38. Eom S-W, Lee C-W, Yun M-S, Sun Y-K (2006) The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes. Electrochim Acta 52:1592–1595. https://doi.org/10.1016/j.electacta.2006.02.067

    Article  CAS  Google Scholar 

  39. Gunter JF, Habedank JB, Schreiner D et al (2018) Introduction to electrochemical impedance spectroscopy as a measurement method for the wetting degree of lithium-ion cells. J Electrochem Soc 165:A3249–A3256. https://doi.org/10.1149/2.0081814jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support from the Israeli Science Foundation (ISF Grant #869/17), the Planning & Budgeting Committee/Israel Council for Higher Education (CHE), and the Fuel Choice Initiative (Israel Prime Minister Office) within the framework of “Israel National Research Center for Electrochemical Propulsion (INREP)” and the kind support by the Grand Technion Energy Program (GTEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yair Ein-Eli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is our contribution, celebrating the 75th birthday of Gyuri (George), wishing him good health and high energy to keep up with his tireless scientific curiosity!

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, N.R., Ein-Eli, Y. Synergistic air electrode combining carbon nanotube tissue and fluorinated graphite material in hybrid nonaqueous aluminum batteries. J Solid State Electrochem 25, 2759–2766 (2021). https://doi.org/10.1007/s10008-021-05070-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05070-1

Keywords

Navigation