Skip to main content

Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice

Abstract

Selective electrochemical transformations of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi2)m(Bi2Te3)n superlattice structures formed by pulse potential controlled electrodeposition were characterized with electrochemical microgravimetry on quartz crystal electrodes, cyclic voltammetry, potentiodynamic electrochemical impedance spectroscopy (PDEIS), and in situ Raman spectroscopy. The oxidation potential of bismuth in the interlayers is in between the potentials of metallic bismuth and bismuth telluride anodic oxidation, which allows electrochemical detection and selective anodic dissolution of the interlayer bismuth. Microgravimetry and cyclic voltammetry have provided monitoring of bismuth interlayer dissolution and the subsequent underpotential deposition (upd) of bismuth adatoms onto Bi2Te3 layers in the electrochemically created slits. PDEIS provided separate monitoring of the interfacial charge transfer, spatially restricted diffusion, capacitance of faradaic origin, and double-layer capacitance, which disclosed different variations of the electrochemical interface area in the superlattices with initial bismuth content below and above that of Bi4Te3. In situ Raman spectroscopy has monitored the removal of bismuth interlayers and distinguished different locations of Bi adatoms in two stages of Bi upd. The electrochemically created slits of molecular dimension have a potential of being used as sieves, e.g., to provide selective accessibility of the electrochemically created centers inside them to molecules and ions in multi-component solutions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bos JWG, Zandbergen HW, Lee MH et al (2007) Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n. Phys Rev B - Condens Matter Mater Phys 75:195203. https://doi.org/10.1103/PhysRevB.75.195203

    CAS  Article  Google Scholar 

  2. Sharma PA, Lima-Sharma AL, Medlin DL et al (2011) Low phonon thermal conductivity of layered (Bi2)m-(Bi2Te3)n thermoelectric alloys. Phys Rev B - Condens Matter Mater Phys 83:235209. https://doi.org/10.1103/PhysRevB.83.235209

    CAS  Article  Google Scholar 

  3. Zhu H, Zhao C, Nan P et al (2021) Intrinsically low lattice thermal conductivity in natural superlattice (Bi2)m(Bi2Te3)n thermoelectric materials. Chem Mater 33:1140–1148. https://doi.org/10.1021/acs.chemmater.0c03691

    CAS  Article  Google Scholar 

  4. Zhou J, Jin C, Seol JH et al (2005) Thermoelectric properties of individual electrodeposited bismuth telluride nanowires. Appl Phys Lett 87:133109. https://doi.org/10.1063/1.2058217

    CAS  Article  Google Scholar 

  5. Marcilla R, Ochoteco E, Pomposo JA, Mecerreyes D (2001) Electrodeposition of ordered Bi2Te3 nanowires array. J Am Chem Soc 123:7160–7161. https://doi.org/10.1021/ja015989j

    CAS  Article  Google Scholar 

  6. Menke EJ, Li Q, Penner RM (2004) Bismuth telluride (Bi2Te3) nanowires synthesized by cyclic electrodeposition / stripping coupled with step edge decoration. Nano Lett 4:2009–2014. https://doi.org/10.1021/nl048627t

    CAS  Article  Google Scholar 

  7. Lee J, Farhangfar S, Lee J et al (2008) Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition. Nanotechnology 19:365701. https://doi.org/10.1088/0957-4484/19/36/365701

    CAS  Article  PubMed  Google Scholar 

  8. Mavrokefalos A, Moore AL, Pettes MT et al (2009) Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires. J Appl Phys 105:104318. https://doi.org/10.1063/1.3133145

    CAS  Article  Google Scholar 

  9. Bejenari I, Kantser V, Balandin AA (2010) Thermoelectric properties of electrically gated bismuth telluride nanowires. Phys Rev B - Condens Matter Mater Phys 81:075316. https://doi.org/10.1103/PhysRevB.81.075316

    CAS  Article  Google Scholar 

  10. Frantz C, Stein N, Gravier L et al (2010) Electrodeposition and characterization of bismuth telluride nanowires. J Electron Mater 39:2043–2048. https://doi.org/10.1007/s11664-009-1001-2

    CAS  Article  Google Scholar 

  11. Borca-Tasciuc DA, Chen G, Prieto A et al (2004) Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina. Appl Phys Lett 85:6001–6003. https://doi.org/10.1063/1.1834991

    CAS  Article  Google Scholar 

  12. Chang T, Cho S, Kim J et al (2015) Individual thermoelectric properties of electrodeposited bismuth telluride nanowires in polycarbonate membranes. Electrochim Acta 161:403–407. https://doi.org/10.1016/j.electacta.2015.02.105

    CAS  Article  Google Scholar 

  13. Chatterjee K, Suresh A, Ganguly S et al (2009) Synthesis and characterization of an electro-deposited polyaniline-bismuth telluride nanocomposite - a novel thermoelectric material. Mater Charact 60:1597–1601. https://doi.org/10.1016/j.matchar.2009.09.012

    CAS  Article  Google Scholar 

  14. Lind H, Lidin S, Häussermann U (2005) Structure and bonding properties of (Bi2Se3)m(Bi2)n stacks by first-principles density functional theory. Phys Rev B - Condens Matter Mater Phys 72:184101. https://doi.org/10.1103/PhysRevB.72.184101

    CAS  Article  Google Scholar 

  15. Gibson QD, Schoop LM, Weber AP et al (2013) Termination-dependent topological surface states of the natural superlattice phase Bi4Se3. Phys Rev B - Condens Matter Mater Phys 88:081108. https://doi.org/10.1103/PhysRevB.88.081108

    CAS  Article  Google Scholar 

  16. Valla T, Ji H, Schoop LM et al (2012) Topological semimetal in a Bi-Bi2Se3 infinitely adaptive superlattice phase. Phys Rev B - Condens Matter Mater Phys 86:241101. https://doi.org/10.1103/PhysRevB.86.241101

    CAS  Article  Google Scholar 

  17. Samanta M, Biswas K (2020) 2D nanosheets of topological quantum materials from homologous (Bi2)m(Bi2Se3)n heterostructures: Synthesis and ultralow thermal conductivity. Chem Mater 32:8819–8826. https://doi.org/10.1021/acs.chemmater.0c02129

    CAS  Article  Google Scholar 

  18. Johannsen JC, Autès G, Crepaldi A et al (2015) Engineering the topological surface states in the (Sb2)m-Sb2Te3 (m=0-3) superlattice series. Phys Rev B - Condens Matter Mater Phys 91:201101. https://doi.org/10.1103/PhysRevB.91.201101

    CAS  Article  Google Scholar 

  19. Bakavets A, Aniskevich Y, Yakimenko O et al (2020) Pulse electrodeposited bismuth-tellurium superlattices with controllable bismuth content. J Power Sources 450:227605. https://doi.org/10.1016/j.jpowsour.2019.227605

    CAS  Article  Google Scholar 

  20. Ragoisha GA, Bondarenko AS (2003) Potentiodynamic electrochemical impedance spectroscopy for solid state chemistry. Solid State Phenom 90–91:103–108. https://doi.org/10.4028/www.scientific.net/SSP.90-91.103

  21. Ragoisha GA, Bondarenko AS (2005) Potentiodynamic electrochemical impedance spectroscopy. Electrochim Acta 50:1553–1563. https://doi.org/10.1016/j.electacta.2004.10.055

    CAS  Article  Google Scholar 

  22. Bondarenko AS, Ragoisha GA (2005) Inverse problem in potentiodynamic electrochemical impedance. In: Progress in Chemometrics Research. Nova Science Publ, New York, pp 89–102. http://www.novapublishers.org/catalog/product_info.php?products_id=2337

  23. Bondarenko AS, Ragoisha GA (2008) EIS Spectrum Analyser. http://www.abc.chemistry.bsu.by/vi/analyser/

  24. Inzelt G, Kertész V, Nybäck AS (1999) Electrochemical quartz crystal microbalance study of ion transport accompanying charging-discharging of poly(pyrrole) films. J Solid State Electrochem 3:251–257. https://doi.org/10.1007/s100080050155

    CAS  Article  Google Scholar 

  25. Inzelt G (1990) A quartz crystal microbalance study of the sorption of ions and solvent molecules in poly(tetracyanoquinodimethane) electrodes. J Electroanal Chem Interf Electrochem 287:171–177. https://doi.org/10.1016/0022-0728(90)87167-I

    CAS  Article  Google Scholar 

  26. Inzelt G, Berkes B, Kriston Á (2010) Temperature dependence of two types of dissolution of platinum in acid media. An electrochemical nanogravimetric study Electrochim Acta 55:4742–4749. https://doi.org/10.1016/j.electacta.2010.03.074

    CAS  Article  Google Scholar 

  27. Buck RP, Lindner E, Kutner W, Inzelt G (2004) Piezoelectric chemical sensors (IUPAC technical report). Pure Appl Chem 76:1139–1160. https://doi.org/10.1351/pac200476061139

    CAS  Article  Google Scholar 

  28. Chulkin PV, Aniskevich YM, Streltsov EA, Ragoisha GA (2015) Underpotential shift in electrodeposition of metal adlayer on tellurium and the free energy of metal telluride formation. J Solid State Electrochem 19:2511–2516. https://doi.org/10.1007/s10008-015-2831-x

    CAS  Article  Google Scholar 

  29. Bakavets A, Aniskevich Y, Ragoisha G et al (2021) The optimized electrochemical deposition of bismuth-bismuth telluride layered crystal structures. IOP Conf Ser Mater Sci Eng 1140:012016. https://doi.org/10.1088/1757-899x/1140/1/012016

    CAS  Article  Google Scholar 

  30. Inzelt G (1995) Characterization of modified electrodes by electrochemical quartz crystal microbalance, radiotracer technique and impedance spectroscopy. Electroanalysis 7:895–903. https://doi.org/10.1002/elan.1140070918

    CAS  Article  Google Scholar 

  31. Inzelt G, Láng G (1991) Impedance analysis of poly (tetracyanoquinodimethane) electrodes: effect of electrolyte concentration and temperature. Electrochim Acta 36:1355–1361. https://doi.org/10.1016/0013-4686(91)80016-2

    CAS  Article  Google Scholar 

  32. Inzelt G, Láng GG (2010) Electrochemical impedance spectroscopy (EIS) for polymer characterization. In: Electropolymerization: Concept Mater App, Wiley pp 51–76. https://doi.org/10.1002/9783527630592.ch3

  33. Ragoisha GA (2020) Challenge for electrochemical impedance spectroscopy in the dynamic world. J Solid State Electrochem 24:2171–2172. https://doi.org/10.1007/s10008-020-04679-y

    CAS  Article  Google Scholar 

  34. Ragoisha GA, Aniskevich YM, Bakavets AS, Streltsov EA (2020) Electrochemistry of metal adlayers on metal chalcogenides. J Solid State Electrochem 24:2585–2594. https://doi.org/10.1007/s10008-020-04681-4

    CAS  Article  Google Scholar 

  35. Bondarenko AS, Ragoisha GA (2008) EIS Spectrum Analyser online manual. http://www.abc.chemistry.bsu.by/vi/analyser/parameters.html

  36. Ragoisha GA (2015) Potentiodynamic electrochemical impedance spectroscopy for underpotential deposition processes. Electroanalysis 27:855–863. https://doi.org/10.1002/elan.201400648

    CAS  Article  Google Scholar 

  37. Bondarenko AS, Ragoisha GA, Osipovich NP, Streltsov EA (2005) Potentiodynamic electrochemical impedance spectroscopy of lead upd on polycrystalline gold and on selenium atomic underlayer. Electrochem Commun 7:631–636. https://doi.org/10.1016/J.ELECOM.2005.04.001

    CAS  Article  Google Scholar 

  38. Conway BE, Barber J, Morin S (1998) Comparative evaluation of surface structure specificity of kinetics of UPD and OPD of H at single-crystal Pt electrodes. Electrochim Acta 44:1109–1125. https://doi.org/10.1016/S0013-4686(98)00214-X

    CAS  Article  Google Scholar 

  39. Ragoisha GA, Bondarenko AS (2003) Potentiodynamic electrochemical impedance spectroscopy. Copper underpotential deposition on gold. Electrochem Commun 5:392–395. https://doi.org/10.1016/S1388-2481(03)00075-4

    CAS  Article  Google Scholar 

  40. Chulkin PV, Ragoisha GA (2010) Impedance spectroscopy on rotating disc electrode. Sviridov Readings, BSU 6:132–140 (in Russian)

    Google Scholar 

  41. Peng L, Ren X, Liang Z et al (2021) Reversible proton co-intercalation boosting zinc-ion adsorption and migration abilities in bismuth selenide nanoplates for advanced aqueous batteries. Energy Storage Materials 42:34–41. https://doi.org/10.1016/j.ensm.2021.07.015

    Article  Google Scholar 

  42. Richter W, Kohler H, Becker CR (1977) A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 < x < 1), (Bi1−ySby)2Te3 (0 < y < 1). Phys Stat Sol B 84:619–628. https://doi.org/10.1002/pssb.2220840226

    CAS  Article  Google Scholar 

  43. Zhang J, Huang G (2014) Phonon dynamics in (Bi2Se3)m(Bi2)n infinitely adaptive series. Solid State Commun 197:34–39. https://doi.org/10.1016/j.ssc.2014.08.004

    CAS  Article  Google Scholar 

  44. Russo V, Bailini A, Zamboni M et al (2008) Raman spectroscopy of Bi-Te thin films. J Raman Spectrosc 39:205–210. https://doi.org/10.1002/jrs.1874

    CAS  Article  Google Scholar 

  45. Rodríguez-Fernández C, Manzano CV, Romero AH et al (2016) The fingerprint of Te-rich and stoichiometric Bi2Te3 nanowires by Raman spectroscopy. Nanotechnology 27:075706. https://doi.org/10.1088/0957-4484/27/7/075706

    CAS  Article  PubMed  Google Scholar 

  46. Ham S, Jeon S, Lee U et al (2008) Compositional analysis of electrodeposited bismuth telluride thermoelectric thin films using combined electrochemical quartz crystal microgravimetry-stripping voltammetry. Anal Chem 80:6724–6730. https://doi.org/10.1021/ac8008127

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This research has received funding from Horizon 2020 research and innovation program under MSCA-RISE-2017 (no 778357) and Himreagent 2021–2025 (nos. 20210562 and 20211465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genady Ragoisha.

Additional information

Dedicated to Professor György Inzelt on the occasion of his 75th birthday with recognition of his valuable contribution to electrochemistry.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakavets, A., Aniskevich, Y., Ragoisha, G. et al. Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice. J Solid State Electrochem 25, 2807–2819 (2021). https://doi.org/10.1007/s10008-021-05068-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05068-9

Keywords

  • Bismuth telluride
  • Bismuth interlayer
  • Superlattice
  • Impedance spectroscopy
  • Quartz crystal microbalance
  • Raman spectroscopy