Skip to main content
Log in

Fabrication and characterization of magnesium—ion-conducting flexible polymer electrolyte membranes based on a nanocomposite of poly(ethylene oxide) and potato starch nanocrystals

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Flexible and free-standing electrolyte membranes of nanocomposite ‘poly(ethylene oxide) (PEO)/starch-nanocrystals (SNCs)’ complexed with magnesium bromide (MgBr2) salt at various concentrations (5, 10, 15, 20, and 25 WT.%) were prepared using conventional solution casting technique. The microstructural and thermal stability properties of the pure and MgBr2 salt complexed PEO/SNC nanocomposite membranes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). Complex electrochemical impedance spectroscopy (EIS) and dielectric studies of the nanocomposite membranes were carried out over the frequency range 0.1–1 MHz and within the temperature range of 30–70 °C. Concerning pure PEO/SNCs (10 WT.%), the electrolyte membrane of the composition ‘PEO/SNCs (10 WT.%)/MgBr2 (25 WT.%)’ demonstrated more than three orders of magnitude in the room temperature ionic conductivity, as measured by EIS. A clear shift in the position of the dielectric relaxation peaks was noticed as a function of salt doping concentration in \(\partial log\left({\varepsilon }^{{^{\prime}}}\right)/\partial log\left(\omega \right) versus log\left(\omega \right)\) spectra. It was estimated by dielectric spectroscopy that the values of the diffusion coefficient (D) and the total ion concentration (n) for the studied nanocomposite electrolyte membranes were increased in proportion to the doping salt concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Ge S, Leng Y, Liu T, Longchamps RS, Yang XG, Gao Y, Wang D, Wang CY (2020) Sci Adv 6:1–8

    Article  CAS  Google Scholar 

  2. Yamada Y, Wang J, Ko S, Watanabe E, Yamada A (2019) Nat Energy 4:269–280

    Article  CAS  Google Scholar 

  3. Deng J, Bae C, Marcicki J, Masias A, Miller T (2018) Nat Energy 3:261–266

    Article  Google Scholar 

  4. Du A, Zhang H, Zhang Z, Zhao J, Cui Z, Zhao Y, Dong S, Wang L, Zhou X, Cui G (2019) Adv Mater 31:1805930

    Article  CAS  Google Scholar 

  5. Yao P, Yu H, Ding Z, Liu Y, Lu J, Lavorgna M, Wu J, Liu X (2019) Front Chem 7:1–17

    Article  CAS  Google Scholar 

  6. Zhang Q, Liu K, Ding F, Liu X (2017) Nano Res 10:4139–4174

    Article  Google Scholar 

  7. Xue Z, He D, Xie X (2015) J Mater Chem A 3:19218–19253

    Article  CAS  Google Scholar 

  8. Xiao Z, Zhou B, Wang J, Zuo C, He D, Xie X, Xue Z (2019) J Membr Sci 576:182–189

    Article  CAS  Google Scholar 

  9. Zhou B, He D, Hu J, Ye Y, Peng H, Zhou X, Xie X, Xue Z (2018) J Mater Chem A 6:11725–11733

    Article  CAS  Google Scholar 

  10. Paulkner RDA, Kulkarni AR, Jonscher A (1983) Dielectric relaxation in solids, dielectric (Eds.), Solid State Ionics – Materials and Applications, Press, London

  11. Bouridah A, Dalard F, Deroo D, Cheradame H, Le JF (1985) Solid State Ion 15:233–240

    Article  CAS  Google Scholar 

  12. Scrosati B (1993) Application of electroactive polymers. Chapman and Hall, London

    Book  Google Scholar 

  13. Weston JE, Steele BCH (1982) Solid State Ion 7:75–79

    Article  CAS  Google Scholar 

  14. Benrabah D, Sanchez JY, Armand M (1992) Electrochim Acta 37:1737–1741

    Article  CAS  Google Scholar 

  15. Giannelis EP (1996) Adv Mater 8:29–35

    Article  CAS  Google Scholar 

  16. Liu F, Hu N, Zhang J, Atobe S, Weng S, Ning H, Liu Y, Wu L, Zhao Y, Mo F, Fu S, Xu C (2016) RSC Adv 6:66658–66664

    Article  CAS  Google Scholar 

  17. Lipatov YS (1995) Polymer reinforcement. Chem Tec Publishing, Ukraine

    Google Scholar 

  18. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456–458

    Article  CAS  Google Scholar 

  19. Florjanczyk Z, Marcinek M, Wieczorek W, Langwald N (2004) Pol J Chem 78:1279–1304

    CAS  Google Scholar 

  20. Gross RA, Kalra B (2002) Science 297:803–807

    Article  CAS  PubMed  Google Scholar 

  21. Domene-López D, Guillén M, Martin-Gullon I, García-Quesada JC, Montalbán MG (2018) Carbohydr Polym 202:299–305

    Google Scholar 

  22. Souza AC, Benze R, Ferrão ES, Ditchfield C, Coelho ACV, Tadini CC (2012) LWT - Food Sci Technol 46:110–117

    Article  CAS  Google Scholar 

  23. Abdelghany AM, Oraby AH, Asnag GM (2019) J Mol Struct 1180:15–25

    Article  CAS  Google Scholar 

  24. Ramly K, Khiar ASA (2015) Appl Mech Mater 754–755:29–33

    Article  Google Scholar 

  25. Yu F, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2013) Carbohydr Polym 91:253–261

    Article  CAS  PubMed  Google Scholar 

  26. Jagadish RS, Raj B, Parameswara P, Somashekar R (2013) J Appl Polym Sci 127:1191–1197

    Article  CAS  Google Scholar 

  27. Pereira AGB, Gouveia RF, de Carvalho GM, Rubira AF, Muniz EC (2009) Mater Sci Eng C 29:499–504

    Article  CAS  Google Scholar 

  28. Angellier H, Molina-Boisseau S, Dufresne A (2006) Macromol Symp 233:132–136

    Article  CAS  Google Scholar 

  29. Battista OA (1975) Microcrystal polymer science. McGraw-Hill Book Company, New York

    Google Scholar 

  30. Hassoun J, Lee KS, Sun YK, Scrosati B (2011) J Am Chem Soc 133:3139–3143

    Article  CAS  PubMed  Google Scholar 

  31. Vignarooban K, Kushagra R, Elango A, Badami P, Mellander B -E, Xu X, Tucker TG, Nam C, Kannan AM (2016) Int J Hydrog Energy 41: 2829 – 2846

  32. Song J, Sahadeo E, Noked M, Lee SB (2016) J Phys Chem Lett 7:1736–1749

    Article  CAS  PubMed  Google Scholar 

  33. Muldoon J, Bucur CB, Gregory T (2017) Angew Chem Int Ed 56:12064–12084

    Article  CAS  Google Scholar 

  34. Eslam MS, Mona MN, El-Mansy MK (2015) J Adv Res 6:563–569

    Article  CAS  Google Scholar 

  35. Emmanuel O, Ewomazino O, Tizazu M (2018) Eur Polym J 108:570–581

    Article  CAS  Google Scholar 

  36. Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A (2004) Biomacromol 5:1545–1551

    Article  CAS  Google Scholar 

  37. Xi J, Qiu X, Cui M, Tang X, Zhu W, Chen L (2006) J Power Sources 156:581–588

    Article  CAS  Google Scholar 

  38. Dey SA, Karan S, De SK (2009) Solid State Commun 149:1282–1287

    Article  CAS  Google Scholar 

  39. Chazeau L, Cavaillé JY, Perez J (2000) J Polym Sci: Part B: Polym Phys 38:383–392

    Article  CAS  Google Scholar 

  40. Gopalan NK, Dufresne A (2003) Biomacromolecules 4: 657 – 656

  41. Mohamad AA, Mohamad NS, Yahya MZA, Othman R, Ramesh S, Alias Y, Arof AK (2003) Solid State Ion 156:171–177

    Article  CAS  Google Scholar 

  42. Yoshihara T, Tadokoro H, Murahashi S (1964) J Chem Phys 41:2902–2911

    Article  CAS  Google Scholar 

  43. Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA (2006) Polymer 47:3583–3590

    Article  CAS  Google Scholar 

  44. Sireerat I (2005) ‘Preparation, characterization and molecular modelling of poly(ethyleneoxide)/poly(vinylpyrrolidone) montmorillonitenano- composite solid electrolytes’ Thesis adviser: Asst. Prof. Visit Vao-Soongnern, pp.54–175, ISBN:974–533–520–7

  45. Hancock BC, Zografi G (1997) J Pharm Sci 86:1–12

    Article  CAS  PubMed  Google Scholar 

  46. Fragiadakis D, Pissis P (2007) J Non-Cryst Solids 353:4344–4352

    Article  CAS  Google Scholar 

  47. Bandara TMWJ, Mellander B-E, Albinsson I, Dissanayake MAKL, Pitawala HMJC (2009) J Solid State Electrochem 13:1227–1232

    Article  CAS  Google Scholar 

  48. Groenewoud WM (2001) Characterization of polymers by thermal analysis. Elsevier, Netherlands

    Google Scholar 

  49. Kim KM, Ryu KS, Kang SG, Chang SH, Chung IJ (2001) Macromol Chem Phy 202:866–872

    CAS  Google Scholar 

  50. Cordoba – Torres P, Mesquita TJ, Nogueira R (2015) J Phys Chem C 119:4136–4147

    Article  CAS  Google Scholar 

  51. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VVRN (2014) J Membr Sci 454:200–211

    Article  CAS  Google Scholar 

  52. Monisha S, Selvasekarapandian S, Mathavan T, Benial AMF, Manoharan S, Karthikeyan S (2016) J Mater Sci: Mater Electron 27:9314–9324

    CAS  Google Scholar 

  53. Ramalingaiah S, Sinivas Reddy S, Jaipal Reddy M, Laxminarsaiah E, Subba Rao UV (1996) Mater Lett 29:285–289

    Article  CAS  Google Scholar 

  54. Jaipal Reddy M, Peter PC (2002) J Power Sources 109:340–346

    Article  CAS  Google Scholar 

  55. Vincent C (1995) Electrochim Acta 40:2035–2040

    Article  CAS  Google Scholar 

  56. Yang LL, McGhie F (1986) J Electrochem Soc 133:1380–1385

    Article  CAS  Google Scholar 

  57. Karmakar A, Ghosha A (2014) AIP Adv 4: 087112

  58. Chen-Yang YW, Chen YT, H. Chen HC, Lin WT, Tsai CH (2009) Polymer 50: 2856 – 2862

  59. Wieczorek W (1992) Mater Sci Eng: B 15:108–114

    Article  Google Scholar 

  60. Pas SJ, Ingram MD, Funke K, Hill AJ (2005) Electrochim Acta 50:3955–3962

    Article  CAS  Google Scholar 

  61. Fergus JW (2010) J Power Sources 195:4554–4569

    Article  CAS  Google Scholar 

  62. Sorensen TS, Compan V (1995) J Chem Soc Faraday Trans 91:4235–4250

    Article  CAS  Google Scholar 

  63. Kumar M, Srivastava N (2014) J Non-Cryst Solids 389:28–34

    Article  CAS  Google Scholar 

  64. Wang Y (2016) Ionic transport and dielectric relaxation in polymer electrolytes. In: Paluch M. (eds) Dielectric Properties of Ionic Liquids. Advances in Dielectrics. Springer, Cham

  65. Kumar M, Srivastava N (2015) Ionics 21:1301–1310

    Article  CAS  Google Scholar 

  66. Michael W, van Ernout M, K, John C, Jansen, Wim M, Jan van T, (1997) Macro. Rapid Commun 18:139–147

    Google Scholar 

  67. Wang W, Alexandridis P (2016) Polymers 8:387

    Article  PubMed Central  CAS  Google Scholar 

  68. Munar A, Andrio A, Iserte R, Compañ V (2011) J Non-Cryst Solids 357:3064–3069

    Article  CAS  Google Scholar 

  69. Hidaya N, Nasir A, Chan CH, Kammer H-W, Sim LH, Yahya MZA (2010) Macromol Symp 290:46–55

    Article  CAS  Google Scholar 

  70. White RP, Lipson JEG (2016) Macromolecules 49:3987–4007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support by the BNSF of Bulgaria, under National Scientific Program “Petar Beron i NIE” (P. Beron) contract № KP-06-DB-1/16.12.2019. Authors express their sincere thanks to Dr. Vanna Sanna (Nanomater S.r.l.—Alghero (Sassary)—ITALY) for her kind support by providing starch nanocrystals of size about 80 nm and for providing SEM images to interpret the surface morphology of acid hydrolysed starch nanocrystals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Krishna Koduru.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1512 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koduru, H.K., Marinov, Y.G., Kaleemulla, S. et al. Fabrication and characterization of magnesium—ion-conducting flexible polymer electrolyte membranes based on a nanocomposite of poly(ethylene oxide) and potato starch nanocrystals. J Solid State Electrochem 25, 2409–2428 (2021). https://doi.org/10.1007/s10008-021-05018-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05018-5

Keywords

Navigation