Skip to main content

Electrodeposition of Se on carbon-supported Pt nanoparticles by cyclic voltammetry


Cyclic voltammetry (CV) is a powerful and popular electrochemical technique widely used to study the surface structure of materials through the electrochemical behaviors. Herein CV is utilized to study the electrochemical deposition of selenium (Se) on carbon black-supported Pt nanostructures. We synthesized carbon-loaded platinum nanoparticles (Pt/C) by microwave method and studied the electrochemical behavior of selenium on them. Through the experiment of changing the reverse potential, the corresponding relationship between the Se deposition peak and stripping peak was clarified and the deposition and stripping process of Se was proposed. Meanwhile, we synthesized cubic and octahedral nanocrystals of Pt, and used CV to study the Se deposition on these nanosctructures supported by carbon. It was found that the relative intensity of UPD peaks on Pt is different, as Ptcube@C is dominated by (100) and Ptoct@C electrode is dominated by (111) while Pt@C falls in between.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Sun X, Zhu X, Zhang N et al (2015) Controlling and self assembling of monodisperse platinum nanocubes as efficient methanol oxidation electrocatalysts. Chem Commun 51(17):3529–3532

    CAS  Article  Google Scholar 

  2. 2.

    Wu Y, Cai S, Wang D et al (2012) Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt–Ni nanocrystals and their structure–activity study in model hydrogenation reactions. J Am Chem Soc 134(21):8975–8981

    CAS  Article  Google Scholar 

  3. 3.

    Sánchez-Sánchez CM, Solla-GullóN J, Vidal-Iglesias FJ et al (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132(16):5622–5624

    Article  Google Scholar 

  4. 4.

    Mendoza-Huizar LH, Rios-Reyes CH (2011) Underpotential deposition of cobalt onto polycrystalline platinum. J Solid State Electr 15(4):737–745

    CAS  Article  Google Scholar 

  5. 5.

    Łosiewicz B, Jurczakowski R, Lasia A (2012) Kinetics of hydrogen underpotential deposition at polycrystalline platinum in acidic solutions. Electrochimica acta 80:292–301

    Article  Google Scholar 

  6. 6.

    Sarabia FJ, Climent V, Feliu JM (2018) Underpotential deposition of nickel on platinum single crystal electrodes. J Electroanal Chem 819:391–400

    CAS  Article  Google Scholar 

  7. 7.

    Ning X, Zhou X, Luo J et al (2019) Effects of the synthesis method and promoter content on bismuth-modified platinum catalysts in the electro-oxidation of glycerol and formic acid. Chemelectrochem 6(6):1870–1877

    CAS  Article  Google Scholar 

  8. 8.

    Rizo R, Lazaro MJ, Pastor E et al (2016) Ethanol oxidation on Sn-modified Pt single-crystal electrodes: new mechanistic insights from on-line electrochemical mass spectrometry. Chemelectrochem 3(12):2196–2201

    CAS  Article  Google Scholar 

  9. 9.

    Wang Y, Mohamedi M (2016) Synthesis, characterization, and electrochemical activity of laser Co-deposited Pt-MnO2-decorated carbon nanotube nanocomposites. Chemelectrochem 3(11):1787–1793

    CAS  Article  Google Scholar 

  10. 10.

    Shih Z-Y, Yang Z, Lin Z-H et al (2011) Direct methanol fuel cells using Se/Ru core/shell cathodes provide high catalytic activity and stability. Int J Hydrog Energ 36(12):7303–7309

    CAS  Article  Google Scholar 

  11. 11.

    Wang R, Da H, Wang H et al (2013) Selenium functionalized carbon for high dispersion of platinum–ruthenium nanoparticles and its effect on the electrocatalytic oxidation of methanol. J Power Sources 233:326–330

    CAS  Article  Google Scholar 

  12. 12.

    Mo Y, Scherson DA (2003) Platinum-based electrocatalysts for generation of hydrogen peroxide in aqueous acidic electrolytes: rotating ring-disk studies. J Electrochem Soc 150(1):E39–E46

    CAS  Article  Google Scholar 

  13. 13.

    Duan S, Chen S, Wang T et al (2019) Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double hydroxides. Nanoscale 11(37):17376–17383

    CAS  Article  Google Scholar 

  14. 14.

    Jin Z, Nie H, Yang Z et al (2012) Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale 4(20):6455–6460

    CAS  Article  Google Scholar 

  15. 15.

    Llorca MJ, Herrero E, Feliu JM et al (1994) Formic acid oxidation on Pt(111) electrodes modified by irreversibly adsorbed selenium. J Electroanal Chem 373(1):217–225

    CAS  Article  Google Scholar 

  16. 16.

    Herrero E, Rodes A, Pérez JM et al (1996) Co adsorption and oxidation on Pt(111) electrodes modified by irreversibly adsorbed selenium and tellurium. J Electroanal Chem 412(1):165–174

    Article  Google Scholar 

  17. 17.

    Cheng H, Cao Z, Chen Z et al (2019) Catalytic system based on sub-2 nm Pt particles and its extraordinary activity and durability for oxygen reduction. Nano letters 19(8):4997–5002

    CAS  Article  Google Scholar 

  18. 18.

    Ibraheem S, Chen S, Peng L et al (2020) Strongly coupled iron selenides-nitrogen-bond as an electronic transport bridge for enhanced synergistic oxygen electrocatalysis in rechargeable zinc-O2 batteries. Applied Catalysis B: Environmental 265

  19. 19.

    Feliu JM, Gómez R, Llorca MJ et al (1993) Electrochemical behavior of irreversibly adsorbed selenium dosed from solution on Pt(h, k, l) single crystal electrodes in sulphuric and perchloric acid media. Surface Science 289(1):152–162

    CAS  Article  Google Scholar 

  20. 20.

    Herrero E, Climent VC, Feliu JM (2000) On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt(775) stepped surface. Electrochem Commun 2(9):636–640

    CAS  Article  Google Scholar 

  21. 21.

    Alanyalioglu M, Demir U, Shannon C (2004) Electrochemical formation of Se atomic layers on Au(111) surfaces: the role of adsorbed selenate and selenite. J Electroanal Chem 561:21–27

    CAS  Article  Google Scholar 

  22. 22.

    Chen Y, Wang L, Pradel A et al (2015) Underpotential deposition of selenium and antimony on gold. J Solid State Electrochem 19(8):2399–2411

    CAS  Article  Google Scholar 

  23. 23.

    Santos MC, S a S Machado, (2004) Microgravimetric, rotating ring-disc and voltammetric studies of the underpotential deposition of selenium on polycrystalline platinum electrodes. J Electroanal Chem 567(2):203–210

    CAS  Article  Google Scholar 

  24. 24.

    Maranowski B, Strawski M, Osowiecki W et al (2015) Study of selenium electrodeposition at gold electrode by voltammetric and rotating disc electrode techniques. J Electroanal Chem752:54–59

    CAS  Article  Google Scholar 

  25. 25.

    Segura R, Pizarro J, Díaz K et al (2015) Development of electrochemical sensors for the determination of selenium using gold nanoparticles modified electrodes. Sensors and Actuators B: Chem 220:263–269

    CAS  Article  Google Scholar 

  26. 26.

    Zehl G, Schmithals G, Hoell A et al (2007) On the structure of carbon-supported selenium-modified ruthenium nanoparticles as electrocatalysts for oxygen reduction in fuel cells. Angew Chem Int Edition 46(38):7311–7314

    CAS  Article  Google Scholar 

  27. 27.

    Zha M, Liu Z, Wang Q et al (2021) Efficient alcohol fuel oxidation catalyzed by a novel Pt/Se catalyst. Chem Commun 57(2):199–202

    CAS  Article  Google Scholar 

  28. 28.

    Liua Z, Gana LM, Honga L et al (2005) Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J Power Sources 139(1):73–78

    Article  Google Scholar 

  29. 29.

    Chen D, Tao Q, Liao LW et al (2011) Determining the active surface area for various platinum electrodes. Electrocatalysis 2(3):207

    CAS  Article  Google Scholar 

  30. 30.

    Yang H, Tang Y, Zou S (2014) Electrochemical removal of surfactants from Pt nanocubes. Electrochem Commun 38:134–137

    CAS  Article  Google Scholar 

  31. 31.

    Solla-Gullón J, Vidal-Iglesias FJ, López-Cudero A et al (2008) Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 10(25):3689–3698

    Article  Google Scholar 

  32. 32.

    Solla-Gullón J, Feliu JM (2020) State of the art in the electrochemical characterization of the surface structure of shape-controlled Pt, Au, and Pd nanoparticles. Current Opinion Electrochem 22:65–71

    Article  Google Scholar 

  33. 33.

    Vidal-Iglesias FJ, AráN-Ais RM, Solla-GullóN J et al (2012) Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes. ACS Catalysis 2(5):901–910

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the Natural Science Foundation of Tianjin, China (No. 18JCYBJC20600) and Institute of Energy, Hefei Comprehensive National Science Center (No. 19KZS207).

Author information



Corresponding author

Correspondence to Shi Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Li, H., Liu, J. et al. Electrodeposition of Se on carbon-supported Pt nanoparticles by cyclic voltammetry. J Solid State Electrochem 25, 2471–2478 (2021).

Download citation


  • Cyclic voltammetry
  • Platinum nanoparticles
  • Selenium
  • Underpotential deposition