Skip to main content

Advertisement

Log in

The impact of indium metal as a minor bimetal on the anodic dissolution and passivation performance of zinc for alkaline batteries. Part II: galvanostatic, impedance spectroscopy, and charge–discharge evaluations

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic dissolution and passivation processes of zinc and zinc-indium alloys were investigated in an alkaline solution of 6 M KOH using galvanostatic, electrochemical impedance, and charge–discharge measurements. Galvanostatic measurements exhibit anodic potential/time transient of the zinc anode and its alloys in the concentrated alkaline solution at different current densities. The data reveal that the passivation time (tpass.) diminishes with increasing the content of indium in the alloy under investigation. This means that the alloying of minor indium with zinc retards its dissolution at the active region. The high oscillations in potential, which are observed in the case of zinc, disappeared with the addition of a minor indium content to zinc (Zn-In alloy). The data acquired from impedance (EIS) exhibited that the values of polarization resistance (Rp) and Warburg impedance increase, while the double-layer capacitance (Cdl) diminishes with increasing a minor indium content at both two investigated potentials (−500 and + 500 mV vs. SCE). It is interesting to show that the inductive loop for alloys I and II at −500 mV is observed at intermediate frequencies, in addition to the capacitive loop and Warburg tail. The results of charge–discharge measurements show that the average charge–discharge separation voltages of alloys I and II are 0.8 and 0.9 V, respectively, which are higher than that of pure zinc (0.7 V) at constant time. This indicates that indium alloying with zinc leads to improvement in both energy and charge efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li Y, Dai H (2014) Recent advances in zinc-air batteries. Chem Soc Rev 43:5257–5275

    Article  CAS  PubMed  Google Scholar 

  2. Chen Z, Yu A, Ahmed R, Wang H, Li H, Chen Z (2012) Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim Acta 69:295–300

    Article  CAS  Google Scholar 

  3. Ma H, Wang B, Fan Y, Hong W (2014) Development and characterization of an electrically rechargeable zinc-air battery stack. Energies 7:6549–6557

    Article  CAS  Google Scholar 

  4. El-Sayed A, Abd El-Lateef HM, Mohran HS (2015) Effect of nickel content on the anodic dissolution and passivation of zinc-nickel alloys in alkaline solutions by potentiodynamic and potentiostatic techniques. Bull Mater Sci 38:379–391

    Article  CAS  Google Scholar 

  5. Amin MA, Hassan HH, Abd El Rehim SS (2008) On the role of NO2- ions in the passivity breakdown of zinc in deaerated neutral sodium nitrite solutions and the effect of some inorganic inhibitors using potentiodynamic polarization, cyclic voltammetry, SEM and EDX studies. Electrochim Acta 53:2600–2609

    Article  CAS  Google Scholar 

  6. Lee JS, Kim ST, Coa R, Choi NS, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1:34–50

    Article  CAS  Google Scholar 

  7. Caldeira V, Thiel J, Lacoste FR, Dubau L, Chatenet M (2020) Improving zinc porous electrode for secondary alkaline batteries: toward a simple design of optimized 3D conductive network current collector. J Power Sources 450:227668

    Article  CAS  Google Scholar 

  8. Song M, Tan H, Chao D, Fan HJ (2018) Recent advances in Zn-ion batteries. Adv Funct Mater 28:1802564

    Article  CAS  Google Scholar 

  9. Fang G, Zhou J, Pan A, Liang S (2018) Recent advances in aqueous Zn-ion batteries. ACS Energy Lett 3:2480–2501

    Article  CAS  Google Scholar 

  10. Li H, Ma L, Han C, Wang Z, Liu Z, Tang Z, Zhi C (2019) Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62:550–587

    Article  CAS  Google Scholar 

  11. El-Sayed A, Mohran HS, Abd El-Lateef HM (2010) effect of minor nickel alloying with zinc on the electrochemical and corrosion behavior of zinc in alkaline solution. J Power Sources 195:6924–6936

    Article  CAS  Google Scholar 

  12. El-Sayed A, Mohran HS, Abd El-Lateef HM (2011) Inhibitive action of ferricyanide complex anion on both corrosion and passivation of zinc-nickel alloy in the alkaline solution. J Power Sources 196:6573–6582

    Article  CAS  Google Scholar 

  13. Yi J, Liang P, Liu X, Wu K, Liu Y, Wang Y, Xia Y, Zhang J (2018) Challenges mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries. Energy Environ Sci 11:3075–3095

    Article  CAS  Google Scholar 

  14. Dundálek J, Šnajdr I, Libánský O, Vrána J, Pocedič J, Mazúr P, Kosek J (2017) Zinc electrodeposition from flowing alkaline zincate solutions: role of hydrogen evolution reaction. J Power Sources 372:221–226

    Article  CAS  Google Scholar 

  15. Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z (2017) Electrically rechargeable zinc-air batteries: progress, challenges, and perspective. Adv Mater 29:1604685

    Article  CAS  Google Scholar 

  16. Yashizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpKa from aqueous solutions. J Am Chem Soc 125:15411–15419

    Article  CAS  Google Scholar 

  17. Macfarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliot GD, Davis JH, Watanabe M, Simon P, Angell SA (2014) Energy applications of ionic liquids. Energy Environ Sci 7:232–250

    Article  CAS  Google Scholar 

  18. Kar M, Jensen BW, Armand M, Simons TJ, Winther-Jensen O, Forsyth M, MacFarlane DR (2016) Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytes. Electrchim Acta 188:461–471

    Article  CAS  Google Scholar 

  19. Liu Z, Pulletikurthi G, Lahiri A, Cui T, Endres F (2016) Suppressing the dendritic growth of zinc in an ionic liquid containing cationic and anionic zinc complexes for battery applications. Dalton Trans 45:8089–8098

    Article  CAS  PubMed  Google Scholar 

  20. Thomas Goh FW, Liu Z, Hor TS, Zhang J, Ge X, Zong Y, Yu A, Khoo W (2014) A near-neutral chloride electrolyte for electrically rechargeable zinc-air batteries. J Electrochem Soc 161:A2080–A2086

    Article  CAS  Google Scholar 

  21. Rahman MA, Wang X, Wen C (2013) High energy density metal-air batteries: a review. J Electrochem Soc 160:A1759–A1771

    Article  CAS  Google Scholar 

  22. Tang Y, Lu L, Roesky HW, Wang L, Huang B (2004) The effect of zinc on the aluminum anode of the aluminum-air battery. J Power Sources 138:313–318

    Article  CAS  Google Scholar 

  23. Bender S, Goellner J, Heyn A, Schmigalla S (2012) A new theory for the negative difference effect in magnesium corrosion. Mater Corros 63:707–712

    Article  CAS  Google Scholar 

  24. Zeng D, Yang Z, Wang S, Ni X, Ai D, Zhang Q (2011) Preparation and electrochemical performance of In-doped ZnO as anode material for Ni–Zn secondary cells. Electrochim Acta 56:4075–4080

    Article  CAS  Google Scholar 

  25. Abd El-Lateef HM, El-Sayed A, Mohran HS, Shilkamy HA (2019) Corrosion inhibition and adsorption behavior of phytic acid on Pb and Pb–In alloy surfaces in acidic chloride solution. Int J Ind Chem 10:31–47

    Article  CAS  Google Scholar 

  26. Foad El-Sherbini EE, Moussa SO, Abd El-Rehim SS, Hamed E (2007) Effect of some polymeric materials on the corrosion behaviour of tin in succinic acid solution. J Appl Electrochem 37:533–541

    Article  CAS  Google Scholar 

  27. Abdel-Lateef HM, El-Sayed A, Moharan H (2015) Role of nickel alloying on anodic dissolution behavior of zinc in 3.5% NaCl solution. Part II: Potentiodynamic and galvanostatic studies. Trans Nonferrous Met China 25:3152–3164

    Article  CAS  Google Scholar 

  28. Chiba A, Tanaka S, Inami W, Sugita A, Takada K, Kawata Y (2013) Amorphous silicon nitride thin films implanted with cerium ions for cathodoluminescent light source. Opt Mater 35:1887–1889

    Article  CAS  Google Scholar 

  29. Abd El- Rehim SS, Hassan HH, Mohammed NF (2004) Anodic behavior of tin in maleic acid solution and the effect of some inorganic inhibitors. Corros Sci 46:1071–1082

    Article  CAS  Google Scholar 

  30. El-Sayed A, Mohran H, Shilkamy HA (2014) Role of indium alloying with lead as a means to reduce the passivation phenomena in lead/ acid batteries. Int J Electrochem 2014:ID932654

  31. El-Sayed AR, Mohran HS, Abd El-Lateef HM (2009) Anodic behavior of tin, indium and tin-indium alloys in oxalic acid solution. J Solid State Electrochem 13:1279-1290

  32. Gilek D, Brzózka A, Hnida KE, Sulka GD (2019) Electrochemical behavior of InSb thin films with different crystal structure in alkaline solution. Electrochim Acta 302:352–362

    Article  CAS  Google Scholar 

  33. Bayol E, Gurten AA, Dursun M, Kayakirilman K (2008) Adsorption behavior and inhibition corrosion effect of sodium carboxymethyl cellulose on mild steel in acidic medium. Acta Phys Chim Sin 24:2236–2243

    Article  CAS  Google Scholar 

  34. Abd El-Lateef HM, Aliyeva LI, Abbasov VM, Ismayilov TI (2012) Corrosion inhibition of low carbon steel in CO2- saturated solution using anionic surfactant. J Adv Appl Sci Res 3:1185–1201

    CAS  Google Scholar 

  35. Abd El Aal EE, Abd El Wanees S (2009) Galvanostatic study of the breakdown of Zn passivity by sulphate anions. Corros Sci 51:1780–1788

    Article  CAS  Google Scholar 

  36. Abd El- Aal EE (2008) Oxide film formation on zinc in borate solutions in open circuit. Corros Sci 50:41–46

    Article  CAS  Google Scholar 

  37. Bockelmann M, Reining L, Kunz U, Turek T (2017) Electrochemical characterization and mathematical modeling of zinc passivation in alkaline solutions: a review. Electrochim Acta 237:276–298

    Article  CAS  Google Scholar 

  38. Wittman RM, Sacci RL, Zawodzinski TA (2019) Elucidating mechanisms of oxide growth and surface passivation on zinc thin film electrodes in alkaline solutions using the electrochemical quartz crystal microbalance. J Power Sources 438:227034

    Article  CAS  Google Scholar 

  39. Mohammed A, Amin Q, Gaber AM (2010) Inhibition of uniform and pitting corrosion processes of Al induced by SCN- anion-Part I: effect of glycine. J Portugal Electrochim Acta 28:95–112

    Google Scholar 

  40. Bard AJ, Faulkner LR (2000) Electrochemical methods and applications, 2nd edn. Wily, New York

    Google Scholar 

  41. Wysocka J, Krakowiak S, Ryl J (2017) Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring. Electrochim Acta 258:1463–1475

    Article  CAS  Google Scholar 

  42. Abd El- Rehim SS, Hassan HH, Mohammed A (2002) Corrosion and corrosion inhibition of Al and some alloys in sulphate solutions containing halide ions investigated by an impedance technique. Appl Surf Sci 187:279–290

    Article  Google Scholar 

  43. Mainar AR, Colmenares LC, Grande HJ, Blazquez JA (2018) Enhancing the cycle life of a zinc-air battery by means of electrolyte additives and zinc surface protection. Batteries 4:46

    Article  CAS  Google Scholar 

  44. Gu P, Zheng M, Zhao Q, Xiao X, Xue H, Pang H (2017) Rechargeable zinc-air batteries: a promising way to green energy. J Mat Chem A 5:7651

    Article  CAS  Google Scholar 

  45. Min S, Zhao C, Chen G, Qian X (2014) One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. J Electrochim Acta 115:155–164

    Article  CAS  Google Scholar 

  46. He X, Bae J (2018) Facile synthesis of amorphous CuO nano sheets on nickel foam by utilizing ZnO nanowires for high-performance supercapacitors. J Electron Mater 47:5468–5476

    Article  CAS  Google Scholar 

  47. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. J ACS Nano 6:3206–3213

    Article  CAS  Google Scholar 

  48. Mao L, Guan C, Huang X, Ke Q, Zhang Y, Wang J (2016) 3D graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor. J Electrochimica Acta 196:653–660

    Article  CAS  Google Scholar 

  49. Liu J, Xu C, Chen Z, Ni S, Shen ZX (2018) Progress in aqueous rechargeable batteries. Green Energy Environ 3:20

    Article  Google Scholar 

  50. Pu X, Jiang B, Wang X, Liu W, Dong L (2020) High-performance aqueous zinc-on batteries realized by MOF materials. Nano-Micro Lett 12:152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahmoud Elrouby or Abd El-Rahman Elsayed.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elrouby, M., Shilkamy, H.A.E. & Elsayed, A.ER. The impact of indium metal as a minor bimetal on the anodic dissolution and passivation performance of zinc for alkaline batteries. Part II: galvanostatic, impedance spectroscopy, and charge–discharge evaluations. J Solid State Electrochem 25, 2175–2187 (2021). https://doi.org/10.1007/s10008-021-04996-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04996-w

Keywords

Navigation