Skip to main content
Log in

Mg-doped Li-rich vanadium phosphate Li9V3(P2O7)3(PO4)2 as cathode for lithium-ion batteries: electrochemical performance and lithium storage mechanism

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Considering the poor electronic conductivity of the pure Li9V3(P2O7)3(PO4)2, we have successfully synthesized a series of Li9−xMgxV3(P2O7)3(PO4)2 solid solution by aliovalent metal Mg ion doping on Li site. Due to the introduction of extra electrons caused by partially substituting Li+ ions by Mg2+, the electronic conductivity of the Mg-doped Li9V3(P2O7)3(PO4)2 sample was improved from 3.20×10−7 (for pure sample) to 8.85×10−6 S cm−1 (for Mg-doped sample). However, the inactive Mg2+ occupied the Li+ site often prevent the diffusion of the lithium ions in the electrode material and excessive Mg doping will obviously deteriorate the electrochemical performance of the electrode material. Considering the combined effect of the electronic conductivity and the lithium-ion diffusion coefficient for the excellent electrochemical performance, the optimal Mg-doping amount is x = 0.01 in our experiment. Compared with the pure sample, the Li9−xMgxV3(P2O7)3(PO4)2 (x = 0.01) sample exhibited a significantly increased specific capacity at all density rates and the capacity retention, especially at high rates, almost keep 100%. In addition, using the in-situ X-ray diffraction (XRD) method, we explored the reaction mechanism of the Li9V3(P2O7)3(PO4)2 electrode material and observed the existence and reversibility of the new phase during charge/discharge process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194. https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  2. Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2(3):284–297. https://doi.org/10.1002/aenm.201100642

    Article  CAS  Google Scholar 

  3. Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater 34(3):1525–1528. https://doi.org/10.1002/chin.200303011

    Article  Google Scholar 

  4. Ni Q, Zhang L, Bai Y, Liu T, Ren H, Xu H, Wu C, Lu J (2020) An extremely fast charging Li3V2(PO4)3 cathode at a 4.8 V cutoff voltage for Li-ion batteries. ACS Energy Lett 5(6):1763–1770. https://doi.org/10.1021/acsenergylett.0c00702

  5. Murugan AV, Muraliganth T, Manthiram A (2008) Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium-ion batteries. J Phys Chem C 112(37):14665–14671. https://doi.org/10.1021/jp8053058

    Article  CAS  Google Scholar 

  6. Zhang W (2011) Structure and performance of LiFePO4 cathode materials: a review. J Power Sources 196(6):2962–2970. https://doi.org/10.1016/j.jpowsour.2010.11.113

    Article  CAS  Google Scholar 

  7. Duan H, Wang Z, He B, Zhang J, Yao H, Zhao Y, Fan Q, Kuang Q, Dong Y (2020) Improvement of electrochemical performance of the Li9V3(P2O7)3(PO4)2 cathode material by aliovalent Mo4+ doping. J Solid State Electrochem 25:983–991. https://doi.org/10.1007/s10008-020-04873-y

    Article  CAS  Google Scholar 

  8. Lin X, Zhao Y, Yan D, Han W, Kuang Q, Wen M (2016) Layered Li-rich vanadium phosphate Li9V3(P2O7)3(PO4)2: cathode and anode materials for lithium-ion batteries. Electrochim Acta 191:207–214. https://doi.org/10.1016/j.electacta.2016.01.068

    Article  CAS  Google Scholar 

  9. Miao X, Li C, Chu W, Wu P, Tong D (2015) Li9V3(P2O7)3(PO4)2 nanotubes fabricated by a simple molten salt approach with excellent cycling stability and enhanced rate capability in lithium-ion batteries. RSC Adv 5(1):243–247. https://doi.org/10.1039/C4RA13153C

    Article  CAS  Google Scholar 

  10. Poisson S, d’Yvoire F, Dung N, Bretey E, Berthet P (1998) Crystal structure and cation transport properties of the layered monodiphosphates: Li9M3(P2O7)3(PO4)2 (M=Al, Ga, Cr, Fe). J Solid State Chem 138(1):32–40. https://doi.org/10.1006/jssc.1998.7751

    Article  CAS  Google Scholar 

  11. Kuang Q, Zhao Y, Xu J (2011) Synthesis, structure, electronic, ionic, and magnetic properties of Li9V3(P2O7)3(PO4)2 cathode material for Li-ion batteries. J Phys Chem C 115(16):8422–8429. https://doi.org/10.1021/jp200961b

    Article  CAS  Google Scholar 

  12. Jain A, Hautier G, Moore C, Kang B, Lee J, Chen H, Twu N, Ceder G (2012) A computational investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as cathodes for Li ion batteries. J Electrochem Soc 159(5):A622–A633. https://doi.org/10.1149/2.080205jes

    Article  CAS  Google Scholar 

  13. Balasubramanian P, Mancini M, Axmann P, Wohlfahrt-Mehrens M (2016) Facile synthesis and electrochemical investigation of Li9V3(P2O7)3(PO4)2 as high voltage cathode for Li-ion batteries. J Electrochem Soc 164(1):A6047–A6053. https://doi.org/10.1149/2.0071701jes

    Article  CAS  Google Scholar 

  14. Gu G, Tang D, Wu P, Tian H, Tong D (2013) Monodisperse mesoporous Li9V3(P2O7)3(PO4)2 microspheres prepared via a hydrothermal method as cathode material for lithium-ion batteries. Mater Lett 92:247–251. https://doi.org/10.1016/j.matlet.2012.10.115

    Article  CAS  Google Scholar 

  15. Kuang Q, Xu J, Zhao Y, Chen X, Chen L (2011) Layered monodiphosphate Li9V3(P2O7)3(PO4)2: a novel cathode material for lithium-ion batteries. Electrochim Acta 56(5):2201–2205. https://doi.org/10.1016/j.electacta.2010.11.051

    Article  CAS  Google Scholar 

  16. Kuang Q, Zhao Y (2012) Two-step carbon coating of lithium vanadium phosphate as high-rate cathode for lithium-ion batteries. J Power Sources 216:33–35. https://doi.org/10.1016/j.jpowsour.2012.04.078

    Article  CAS  Google Scholar 

  17. Kuganathan N, Ganeshalingam S, Chroneos A (2018) Defects, dopants and lithium mobility in Li9V3(P2O7)3(PO4)2. Sci Rep 8:8140. https://doi.org/10.1038/s41598-018-26597-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang Z, Zhao Y (2013) Preparation and electrochemical study of Mn-doped Li9V3(P2O7)3(PO4)2 cathode material for lithium-ion batteries. Electrochim Acta 94:374–380. https://doi.org/10.1016/j.electacta.2012.12.054

    Article  CAS  Google Scholar 

  19. Zeng J, Zhao Y, Liang Z, Dong Y (2013) Synthesis and electrochemical properties of Li9V3− xTix(P2O7)3(PO4)2/C compounds via wet method for lithium-ion batteries. J Solid State Electrochem 18:561–567. https://doi.org/10.1007/s10008-013-2292-z

    Article  CAS  Google Scholar 

  20. Chung S, Bloking J, Chiang Y (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128. https://doi.org/10.1038/nmat732

    Article  CAS  PubMed  Google Scholar 

  21. Qiu C, Yuan Z, Liu L, Cheng S, Liu J (2013) Sol-gel synthesis and electrochemical performance of Li4−xMgxTi5−xZrxO12 anode material for lithium-ion batteries. Chin J Chem 31(6):819–825. https://doi.org/10.1002/cjoc.201201111

    Article  CAS  Google Scholar 

  22. Jin Y, Xu Y, Ren F, Ren P (2019) Mg-doped Li1.133Ni0.2Co0.2Mn0.467O2 in Li site as high-performance cathode material for Li-ion batteries. Solid State Ionics 336:87–94. https://doi.org/10.1016/j.ssi.2019.03.020

    Article  CAS  Google Scholar 

  23. Jin X, Xu Q, Liu H, Yuan X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26. https://doi.org/10.1016/j.electacta.2014.05.043

    Article  CAS  Google Scholar 

  24. Xu L, Wang K, Gu F, Li T, Wang Z (2020) Determining the intrinsic role of Mg doping in LiCoO2. Mater Lett 277:128407. https://doi.org/10.1016/j.matlet.2020.128407

    Article  CAS  Google Scholar 

  25. Kuang Q, Lin Z, Zhao Y, Chen X, Chen L (2011) Lithium deintercalation behavior in Li-rich vanadium phosphate as a potential cathode for Li-ion batteries. J Mater Chem 21(38):14760–14765. https://doi.org/10.1039/c1jm12291f

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B090908002) and the project of the Science and Technology Bureau from Dongguan Government (No. 2019622163008).

Author information

Authors and Affiliations

Authors

Contributions

Heng Yao: validation, investigation, writing—original draft, visualization. Youzhong Dong: conceptualization, methodology, writing—review and editing, supervision, funding acquisition. He Duan: formal analysis. Da Chen: data curation. Jun Zhang: funding acquisition. Ming Chen: investigation. Zhiyong Zhou: resources. Yanming Zhao: funding acquisition. Quan Kuang: formal analysis. Qinghua Fan: project administration.

Corresponding author

Correspondence to Youzhong Dong.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Chen, D., Zhang, J. et al. Mg-doped Li-rich vanadium phosphate Li9V3(P2O7)3(PO4)2 as cathode for lithium-ion batteries: electrochemical performance and lithium storage mechanism. J Solid State Electrochem 25, 2267–2277 (2021). https://doi.org/10.1007/s10008-021-04995-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04995-x

Keywords

Navigation