Skip to main content

Advertisement

Log in

Specific capacitance of CoS encapsulated g-C3Ncore shell nanocomposite as extremely efficient counter electrode in quantum dots solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

This article has been updated

Abstract

In this context, the electrical conductivity and surface activity of cobalt sulphide (CoS) as counter electrode CE is improved by incorporating with graphitic carbon nitride (g-C3N4) to enhance the power conversion efficiency (PCE) of quantum dot sensitized solar cells (DSSCs). Core–shell nanocomposite CoS@g-C3N4 composed of CoS core encapsulated by graphitic carbon nitride shell in different weight ratios of CoS to constant ratio of g-C3N4 was synthesised. The prepared composites were assigned as 1:1 (CoS-1), 5:1 (CoS-5), 7:1(CoS-7), 9:1(CoS-9) and 11:1(CoS-11). The different prepared CoS@g-C3N4 nanocomposites were applied as counter electrodes (CEs) in QDSSCs based on TiO2 nanorod arrays with 84.37-nm length and 5.24-nm width as working electrode, cadmium sulphide (CdS) as quantum dots and polysulfide electrolyte. The results show that CoS-7 has superior efficiency with clear improvement in cell performance up to 10.15%, short current density Jsc of 19.5 mA/cm2, open circuit voltage Voc of 0.68 mV and fill factor (FF) of 0.78. The improved performance is attributed to the formation of synergistic heterojunction between g-C3N4 and CoS which facilitates a fast electron transfer at the interface between them; also, more photoelectrons could be produced due to the formation of carbon vacancies in g-C3N4 which made g-C3N4 to hold more excitable electrons and inhibit the recombination of photogenerated carriers. Matching the valence and conduction bands of CoS to those of g-C3N4 also catalyses collecting and mobility rate of the electrons and holes and decreases the recombination rate effectively. Cyclic voltammetry, impedance spectroscopy, the equivalent circuit, analysis of capacitance-frequency spectra, charge transfer spectra and charge recombination were also studied.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 14 December 2022

    Springer Nature’s version of this paper was updated to present correct institution in affiliation 2.

References

  1. Kumar R, Sahajwalla V, Bhargava P (2019) Fabrication of a counter electrode for dye sensitized solar cells (DSSCs) using a carbon material produced with the organic ligand 2- methyl-8-hydroxyquinolinol (Mq). Nanoscale Adv 1:3192–3199

    Article  CAS  Google Scholar 

  2. Mahmoud SA, Bendary SH, Atia H, Martin A (2017) Effect of different electrolytes on the efficiency of dye sensitized solar cells for solar energy conversion. J Nanosci Nanotechnol 17(6):3719–3728

    Article  CAS  Google Scholar 

  3. Mahmoud SA, Atia H, Bendary SH (2016) Synthesis of a high efficiency novel working electrode scandium/HOMBIKAT in dye-sensitized solar cells. Sol Energy 134:452–460

    Article  CAS  Google Scholar 

  4. Mahmoud SA, Fouad OA (2015) Synthesis and application of zinc/tin oxide nanostructures in photocatalysis and dye sensitized solar cells. Sol Energy Mater Sol Cells 136:38–43

    Article  CAS  Google Scholar 

  5. Gad AME, Kamar EM, Mousa MA (2020) Experimental and computational study on electronic and photovoltaic properties of chromen-2-one-based organic dyes used for dye-sensitized solar cells. Egypt J Pet 29(2):203–209

    Article  Google Scholar 

  6. Hwang I, Youg K (2015) Counter electrodes for quantum-dot-sensitized solar cells. Chem Electro Chem 2(5):634–653

    CAS  Google Scholar 

  7. Wu M, Lin X, Wang Y, Ma T (2015) Counter electrode materials combined with redox couples in dye- and quantum dot-sensitized solar cells. J Mater Chem A 3(39):19638–19656

    Article  CAS  Google Scholar 

  8. Kamat PV (2013) Quantum dot solar cells. the next big thing in photovoltaics. J Phys Chem Lett 4(6):908–918

  9. Kamat PV (2012) Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc Chem Res 45(11):1906–1915

    Article  CAS  Google Scholar 

  10. Rühle S, Shalom M, Zaban A (2010) Quantum-dot-sensitized solar cells. Chem Phys Chem 11(11):2290–2304

    Article  Google Scholar 

  11. Zhao K, Pan Z, Mora-Seró I, Canovas E, Wang H, Song Y, Gong X, Wang J, Bonn M, Bisquert J, Zhong X (2015) Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J Am Chem Soc 137(16):5602–5609

    Article  CAS  Google Scholar 

  12. Li S, Chen Z, Li T, Gao H, Wei C, Li W, Kong W, Zhang W (2014) Vertical nanosheet-structured ZnO/TiO2 photoelectrodes for highly efficient CdS quantum dot sensitized solar cells. Electrochim Acta 127:362–368

    Article  CAS  Google Scholar 

  13. Li C, Yang L, Xiao J, Wu YC, Søndergaard M, Luo Y, Li D, Meng Q, Iversen BB (2013) ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells. Chem Chem Phys 15(22):8710–8715

    Article  CAS  Google Scholar 

  14. Hu H, Ding J, Zhang S, Li Y, Bai L, Yuan N (2013) Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells. Nanoscale Res Lett 8(10):1–7

    Google Scholar 

  15. Lai Y, Lin Z, Zheng D, Chi L, Du R, Lin C (2012) CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells. Electrochim Acta 79:175–181

    Article  CAS  Google Scholar 

  16. Rao HS, Wu WQ, Liu Y, Xu YF, Chen BX, Chen HY, Kuang DB, Su CY (2014) CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells. Nano Energy 8:1–8

    Article  CAS  Google Scholar 

  17. Chen H, Li W, Liu H, Zhu L (2011) CdS quantum dots sensitized single- and multi-layer porous ZnO nanosheets for quantum dots-sensitized solar cells. Electrochem Commun 13(4):331–334

    Article  CAS  Google Scholar 

  18. Song XH, Wang MQ, Zhang H, Deng JP, Yang Z, Ran CX, Yao X (2013) Morphologically controlled electrodeposition of CdSe on mesoporous TiO2 film for quantum dot-sensitized solar cells. Electrochim Acta 108:449–457

    Article  CAS  Google Scholar 

  19. Jumabekov AN, Deschler F, Bohm D, Peter LM, Feldmann J, Bein T (2014) Quantum-dot-sensitized solar cells with water-soluble and air-stable PbS quantum dots. J Phys Chem C 118(10):5142–5149

    Article  CAS  Google Scholar 

  20. Hwang I, Seol M, Kim H, Yong K (2013) Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with CdS. Appl Phys Lett 103(2):023902

  21. Zumeta-Dube I, Ruiz-Ruiz FR, Diaz D, Rodil-Posadas S, Zeinert A (2014) TiO2 sensitization with Bi2S3 quantum dots: the inconvenience of sodium ions in the deposition procedure. J Phys Chem: C 118(22):11495–11504

    CAS  Google Scholar 

  22. Li TL, Lee YL, Teng H (2012) High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure. Energy Environ Sci 5(1):5315–5324

    Article  CAS  Google Scholar 

  23. Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A, Sun L (2011) Highly efficient CdS quantum dot-sensitized solar cells based on a modified polysulfide electrolyte. J Am Chem Soc 133(22):8458–8460

    Article  CAS  Google Scholar 

  24. Lee H, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Grätzel M, Nazeeruddin MK (2009) Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9(12):4221–4227

    Article  CAS  Google Scholar 

  25. Jovanovski V, Gonzälez-Pedro V, Gimnez S, Azaceta E, Cabanero G, Grande H, Tena-Zaera R, Mora-SerÛ I, Bisquert J (2011) A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells. J Am Chem Soc 133(50):20156–20159

    Article  CAS  Google Scholar 

  26. Sanehira EM, Marshall AR, Christians JA, Harvey SP, Ciesielski PN, Wheeler LM, Schulz P, Lin LY, Beard MC, Luther JM (2017) Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci Adv 3(10):1–8

  27. Xing M, Zhang Y, Shen Q, Wang R (2020) Temperature dependent photovoltaic performance of TiO2/PbS heterojunction quantum dot solar cells. Sol Energy 195:1–5

    Article  CAS  Google Scholar 

  28. Xing M, Wei Y, Wang D, Shen Q, Wang R (2021) Mg-doped ZnO layer to enhance electron transporting for PbS quantum dot solar cells. Curr Appl Phys 21:14–19

    Article  Google Scholar 

  29. Wu C, Wu Z, Wei J, Dong H, Gao Y (2013) Improving the efficiency of quantum dots sensitized solar cell by using Pt counter electrode. ECS Electrochem Lett 2(9):H31–H33

    Article  CAS  Google Scholar 

  30. Li Q, Cao R, Cho J, Wu G (2014) Nanocarbon electrocatalysts for oxygen reduction in alkaline media for advanced energy conversion and storage. Adv Energy Mater 4(6):1301415

    Article  Google Scholar 

  31. Mora-Seró I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J (2008) Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotech 19(42):424007

  32. Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19(4):604–609

    Article  Google Scholar 

  33. Ye M, Chen C, Zhang N, Wen X, Guo W, Lin C (2014) Quantum dot sensitized solar cells employing hierarchical Cu2S microspheres wrapped by reduced graphene oxide nanosheets as effective counter electrodes. Adv Energy Mater 4(9):1301564

    Article  Google Scholar 

  34. Shen Q, Yamada A, Tamura S, Toyoda T (2010) CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode. Appl Phys Lett 97(12):123107

  35. Yang YY, Zhang QX, Wang TZ, Zhu LF, Huang XM, Zhang YD, Hu X, Li DM, Luo YH, Meng QB (2013) Novel tandem structure employing mesh-structured Cu2S counter electrode for enhanced performance of quantum dot-sensitized solar cells. Electrochim Acta 88:44–50

    Article  CAS  Google Scholar 

  36. Savariraj AD, Viswanathan KK, Prabakar K (2014) CuS nano flakes and nano platelets as counter electrode for quantum dots sensitized solar cells. Electrochim Acta 149:364–369

    Article  CAS  Google Scholar 

  37. Tu Y, Wu J, Lan Z, Lin Y, Liu Q, Lin B, Liu G (2014) Bifacial illuminated PbS quantum dot-sensitized solar cells with translucent CuS counter electrodes. Mater Electron 25:3016–3022

    Article  CAS  Google Scholar 

  38. Kim HJ, Yeo TB, Kim SK, Rao SS, Savariraj AD, Prabakar K, Gopi CVVM (2014) Optimal temperature based highly efficient NiS counter electrode for quantum dot sensitized solar cells. Eur J Inorg Chem 26:4281–4286

    Article  Google Scholar 

  39. Gopi CVVM, Rao SS, Kim SK, Punnoose D, Kim H-J (2015) Highly effective nickel sulfide counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized solar cells. J Power Sources 275:547–556

    Article  CAS  Google Scholar 

  40. Zhang JB, Zhao FY, Tang GS, Lin Y (2013) Influence of highly efficient PbS counter electrode on photovoltaic performance of CdSe quantum dots-sensitized solar cells. J Solid State Electrochem 17:2909–2915

    Article  CAS  Google Scholar 

  41. Xu J, Xue H, Yang X, Wei H, Li W, Li Z, Zhang W, Lee CS (2014) Synthesis of honeycomb-like mesoporous pyrite FeS2 microspheres as efficient counter electrode in quantum dots sensitized solar cells. Small 10(22):4754–4759

    Article  CAS  Google Scholar 

  42. Zeng X, Zhang W, Xie Y, Xiong D, Chen W, Xu X, Wang M, Cheng YB (2013) Low-cost porous Cu2ZnSnSe4 film remarkably superior to noble Pt as counter electrode in quantum dot-sensitized solar cell system. J Power Sources 226:359–362

    Article  CAS  Google Scholar 

  43. Zhang Y, Shi C, Dai X, Liu F, Fang X, Zhu J (2014) Pyrolysis preparation of Cu2ZnSnS4 thin film and its application to counter electrode in quantum dot-sensitized solar cells. Electrochim Acta 118:41–44

    Article  CAS  Google Scholar 

  44. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Article  CAS  Google Scholar 

  45. Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51(1):68–89

    Article  CAS  Google Scholar 

  46. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  Google Scholar 

  47. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106(32):7729–7744

    Article  CAS  Google Scholar 

  48. Frederix F, Friedt JM, Choi KH, Laureyn W, Campitelli A, Maes G, Borghs G (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75(24):6894–6900

    Article  CAS  Google Scholar 

  49. Praharaj S, Nath S, Ghosh SK, Kundu S, Pal T (2004) Immobilization and recovery of au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir 20(23):9889–9892

    Article  CAS  Google Scholar 

  50. Campbell CT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298(5594):811–814

    Article  CAS  Google Scholar 

  51. Skotheim TA (1986) In: Handbook of conducting polymers 1 & 2, vol 138(1), Marcel Dekker Inc, New York/Basel

  52. Kanatzidis MG (1990) Conductive polymers. Chem Eng News 68(49):36–50

    Article  CAS  Google Scholar 

  53. Andersson P, Forchheimer R, Tehrani P, Berggren M (2007) Printable all-organic electrochromic active matrix displays. Adv Func Mater 17(16):3074–3082

    Article  CAS  Google Scholar 

  54. Liu Y, Cui T (2005) Polymeric integrated AC follower circuit with a JFET as an active device. Sol State Electron 49(3)445–448

  55. Lee SK, Cho JM, Goo Y, Shin WS, Lee JC, Lee WH, Kang IN, Shim HK, Moon S (2010) Synthesis and characterization of a thiazolo[5,4-d]thiazole-based copolymer for high performance polymer solar cells. Chem Commun 47(6):1791–1793

    Article  Google Scholar 

  56. Chua LL, Zaumseil J, Chang JF, Ou ECW, Ho PKH, Sirringhaus H, Friend RH (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434:194–199

    Article  CAS  Google Scholar 

  57. Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Müllen K (2009) The influence of morphology on high performance polymer field effect transistors. Adv Mater 21(2):209–212

    Article  CAS  Google Scholar 

  58. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21:14398–14401

    Article  CAS  Google Scholar 

  59. Wang J, Ng SH, Wang GX, Chen J, Zhao L, Chen Y, Liu HK (2006) Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries. J Power Sources 159(1):287–290

    Article  CAS  Google Scholar 

  60. Liu L, Hu P, Cui LX, Zhang Z (2017) Increased photocatalytic hydrogen evolution and stability over nano-sheet g-C3N4 hybridized CdS core@shell structure. Int J Hydrogen Energy 42:17435–17445

    Article  CAS  Google Scholar 

  61. Liu B, Wang D, Wang L, Sun Y, Lin Y, Zhang X, Xie T (2013) Glutathione-assisted hydrothermal synthesis of CdS-decorated TiO2 nanorod arrays for quantum dot-sensitized solar cell. Electrochem Acta 113:661–667

    Article  CAS  Google Scholar 

  62. Zhen M, Li F, Liu R, Song C, Xu L, Luo XZ (2017) MoS2-graphene hybrids as efficient counter electrodes in CdS quantum-dot sensitized solar cells. J Photochem Photobiol A 340:120–127

    Article  CAS  Google Scholar 

  63. Punnoosea D, Kim HJ, Rao SS, Kumar CHSSP (2015) Cobalt sulfide counter electrode using hydrothermal method for quantum dot-sensitized solar cells. Electroanal Chem 750:19–26

    Article  Google Scholar 

  64. Yu J, Wan H, Jianga J, Ruan Y, Miao L, Zhang L, Xia D, Xu K (2014) Activation mechanism study of dandelion-like Co9S8 nanotubes in supercapacitors. J Electrochem Soc 161(6):A996–A1000

    Article  CAS  Google Scholar 

  65. Ge L (2011) Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts. Mater Lett 65:2652–2654

    Article  CAS  Google Scholar 

  66. Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J Nat Sci 42:357–361

    Google Scholar 

  67. Vijayakumar E, Subramani A, Fei Z, Dyson PJ (2015) High-performance dye-sensitized solar cell based on an electrospun poly (vinylidene fluoride-co-hexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte. RSC Adv 5(64):52026–52032

    Article  CAS  Google Scholar 

  68. Subramani K, Sudhan N, Divya R, Sathish M (2017) All-solid-state asymmetric super capacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv 7(11):6648–6659

    Article  CAS  Google Scholar 

  69. Kochuparampil AP, Joshi JH, Joshi MJ (2017) Growth, structural, spectroscopic, thermal, dielectric and optical study of cobalt sulfide-doped ADP crystals. Mod Phys Lett B 31(27):1750246

    Article  CAS  Google Scholar 

  70. Balayeva OO, Azizov A, Muradov MB, Maharramov AM, Eyvazova G (2016) Synthesis and characterization of cobalt sulfide/FNBR nanocomposites by silar method. J Ovonic Res 12(6):267–273

    CAS  Google Scholar 

  71. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds 5th ed. John Willy and Sons Inc, New York, 26(9):430

  72. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135(1):18–21

    Article  CAS  Google Scholar 

  73. Chen YL, Li JH, Hong ZH, Shen B, Lin BZ, Gao BF (2014) Origin of the enhanced visible-light photocatalytic activity of CNT modified g-C3N4 for H2 production. Phys Chem Chem Phys 16(17):8106–8113

    Article  CAS  Google Scholar 

  74. Xiang QJ, Yu JG, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J Phys Chem C 115(15):7355–7363

    Article  CAS  Google Scholar 

  75. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401

    Article  CAS  Google Scholar 

  76. Lyth SM, Nabae Y, Moriya S, Kuroki S, Kakimoto MA, Ozaki JI, Miyata S (2009) Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction. J Phys Chem C 113(47):20148–20151

    Article  CAS  Google Scholar 

  77. Guo S, Zhang C, Zhang F, Li X, Zhang P, Luo L (2017) Synthesis of magnetic g-C3N4 by one-step method and its adsorption performance for Cd (II). IOP Conf Series: Mater Sci Eng 274:012091

  78. Hongbin L, Youzhen Z, Sascha V, Shaochun T, Xiangkang M (2012) Effects of hydrothermal temperature on formation and decoloration characteristics of anatase TiO2 nanoparticles. Sci China Tech Sci 55(4):894–902

    Article  Google Scholar 

  79. Ilyas A-M, Gondal MA, Yamani ZH, Baig U (2017) Facile synthesis of titanium dioxide cadmium sulfide nanocomposite using pulsed laser ablation in liquid and its performance in photovoltaic and photocatalytic applications. Int J Energy Res 41(10):1422–1435

    Article  CAS  Google Scholar 

  80. Selvia RT, Prasanna APS, Niranjan R, Kaushik M, Devasena T, Kumar J, Chelliah R, Oh DH, Swaminathan S, Venkatasubbu GD (2018) Metal oxide curcumin incorporated polymer patches for wound healing. Appl Surf Sci 449:603–609

    Article  Google Scholar 

  81. Katsumata KI, Motoyoshi R, Matsushita N, Okada K (2013) Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J Hazard Mater 260:475–482

    Article  CAS  Google Scholar 

  82. Sridharan K, Jang E, Park TJ (2013) Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl Catal B 142–143:718–728

    Article  Google Scholar 

  83. Li S, Dong G, Hailili R, Yang L, Li Y, Wang F, Zeng Y, Wanga C (2016) Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl Catal B 190:26–35

    Article  CAS  Google Scholar 

  84. Wang C, Jiang Z, Wei L, Chen Y, Jiao J, Eastman M, Liu H (2012) Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: a wet chemical approach. Nano Energy 1(3):440–447

    Article  CAS  Google Scholar 

  85. Wan J, Liu R, Tong Y, Chen S, Hu Y, Wang B, Xu Y, Wang H (2016) Hydrothermal etching treatment to rutile TiO2 nanorod arrays for improving the efficiency of CdS-sensitized TiO2 solar cells. Nanoscale Res Lett 11(12):1–9

    CAS  Google Scholar 

  86. Punnoose D, Kim HJ, Rao SS, Kumar CSP (2015) Cobalt sulfide counter electrode using hydrothermal method for quantum dot-sensitized solar cells. J Electroanal Chem 750:19–26

    Article  CAS  Google Scholar 

  87. Chebrolu VT, Kim HJ (2019) Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. J Mater Chem C 7(17):4911–4933

    Article  CAS  Google Scholar 

  88. Wang C, Jiang Z, Wei L, Chen Y, Jiao J, Eastman M, Liu H (2012) Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: a wet chemical approach. Nano Energy 1:440–447

    Article  CAS  Google Scholar 

  89. Hachiya S, Onishi Y, Shen Q, Toyoda T (2011) Dependences of the optical absorption and photovoltaic properties of CdS quantum dot-sensitized solar cells on the CdS quantum dot adsorption time. J Appl Phys 110:0543191–0543195

    Article  Google Scholar 

  90. Ramachandran R, Felix S, Joshi GM, Ragupathy BPC, Jeong SK, Grace AN (2013) Synthesis of graphene platelets by chemical and electrochemical route. Mater Res Bull 48(10):3834–3842

    Article  CAS  Google Scholar 

  91. Bora C, Dolui SK (2012) Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 53(4):923–932

    Article  CAS  Google Scholar 

  92. Ramachandran R, Felix S, Saranya M, Santhosh C, Velmurugan V, Ragupathy BPC, Jeong SK, Grace AN (2013) Synthesis of cobalt sulfide–graphene (CoS/G) nanocomposites for supercapacitor applications. IEEE Trans Nanotechnol 12(6):985–990

    Article  CAS  Google Scholar 

  93. Ray RS, Sarma B, Jurovitzki AL, Misra M (2015) Fabrication and characterization of titania nanotube/cobalt sulfide supercapacitor electrode in various electrolytes. Chem Eng J 260:671–683

    Article  CAS  Google Scholar 

  94. Subramani K, Sudhanac N, Divyaa R, Sathish M (2017) All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv 7(11):6648–6659

    Article  CAS  Google Scholar 

  95. Wei Y, Zhang S, Niu H, Mao C, Song J, Jin B, Tian Y (2017) Hydrothermal synthesis and capacitance property of cobalt sulfide/graphene oxide nanocomposite. J Wuhan Univ Technol Mater Sci Ed 32:80–84

    Article  CAS  Google Scholar 

  96. Kumar KA, Pandurangan A, Arumugam S, Sathiskumar M (2019) Effect of Bi-functional hierarchical flower-like CoS nanostructure on its interfacial charge transport kinetics, magnetic and electrochemical behaviors for supercapacitor and DSSC applications. Sci Rep 9(1228)

  97. Fan SQ, Fang B, Kim JH, Jeong B, Kim C, Yu JS, Ko J (2010) Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells. Langmuir 26(16):13644–13649

    Article  CAS  Google Scholar 

  98. Maiaugree W, Tangtrakarn A, Lowpa S, Ratchapolthavisin N, Amornkitbamrung V (2015) Facile synthesis of bilayer carbon/Ni3S2 nanowalls for a counter electrode of dye-sensitized solar cell. Electrochim Acta 174:955–962

    Article  CAS  Google Scholar 

  99. Hauch A, Georg A (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim Acta 46(22):3457–3466

    Article  CAS  Google Scholar 

  100. Luo S, Shen H, He H, Lin H (2015) Highly efficient solid-state solar cells based on composite CdS-ZnS quantum dots. J Electrochem Soc 162(10):H747

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sawsan A. Mahmoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, S.A., Mohamed, F.E., El-Sadek, B.M. et al. Specific capacitance of CoS encapsulated g-C3Ncore shell nanocomposite as extremely efficient counter electrode in quantum dots solar cells. J Solid State Electrochem 25, 2345–2360 (2021). https://doi.org/10.1007/s10008-021-04992-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04992-0

Keywords

Navigation