Skip to main content
Log in

Electrochemical performance of spindle-like Fe2Co-MOF and derived magnetic yolk-shell CoFe2O4 microspheres for supercapacitor applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured cobalt ferrite (CoFe2O4) has been synthesized by a two-step process, a facile ultrasonic-assisted solvothermal technique for Fe2Co-MOF preparation and subsequent calcination. X-ray diffraction (XRD) patterns confirm the formation of MIL-88A(Fe) structure of Fe2Co-MOF and the cubic spinel structure of CoFe2O4. Field emission scanning electron microscope (FESEM) images reveal that calcination process converts the spindle-like morphology of Fe2Co-MOF to yolk-shell CoFe2O4 microspheres. From Brunauer–Emmett–Teller (BET) analysis, the specific surface areas of 36.0 and 29.2 m2 g−1 are measured for Fe2Co-MOF and CoFe2O4, respectively. Vibrating sample magnetometer (VSM) analysis of CoFe2O4 displays high coercivity of 2500 Oe due to surface anisotropy. Conversion of Fe2Co-MOF to CoFe2O4 reduces the optical band gap from 1.92 to 1.77 eV. Electrochemical performance of Fe2Co-MOF and CoFe2O4 deposited on Ni foams (NFs) is examined by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) tests. Specific capacitances of 489.9 and 192.6 F g−1 have been achieved from GCD curves at a current density of 1 A g−1 for Fe2Co-MOF/NF and CoFe2O4/NF electrodes, respectively. Fe2Co-MOF/NF electrode exhibits more cyclic stability than CoFe2O4/NF electrode after 3000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11:5293–5308

    Article  CAS  PubMed  Google Scholar 

  2. Zhang C, Ke F, Xiao H et al (2019) Well-designed hollow and porous Co3O4 microspheres used as an anode for Li-ion battery. J Solid State Electrochem 23:2477–2482

    Article  CAS  Google Scholar 

  3. Wang L, Zhang Y, Li X et al (2015) The MIL-88A-derived Fe3O4-carbon hierarchical nanocomposites for electrochemical sensing. Sci Rep 5:14341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang G, Zhang F, Zhang L et al (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2:8048–8053

    Article  CAS  Google Scholar 

  5. Guo H, Li T, Chen W et al (2014) General design of hollow porous CoFe2O4 nanocubes from metal–organic frameworks with extraordinary lithium storage. Nanoscale 6:15168–15174

    Article  CAS  PubMed  Google Scholar 

  6. Koo W-T, Jang H-Y, Kim C et al (2017) MOF derived ZnCo2O4 porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode. J Mater Chem A 5:22717–22725

    Article  CAS  Google Scholar 

  7. Chu K, Li Z, Xu S et al (2020) MOF-derived hollow NiCo2O4 nanowires as stable Li-ion battery anodes. Dalt Trans 49:10808–10815

    Article  CAS  Google Scholar 

  8. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915

    Article  CAS  Google Scholar 

  9. Xiong P, Hu C, Fan Y et al (2014) Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. J Power Sources 266:384–392

    Article  CAS  Google Scholar 

  10. Sundriyal S, Kaur H, Bhardwaj SK et al (2018) Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coord Chem Rev 369:15–38

    Article  CAS  Google Scholar 

  11. Shim BS, Chen W, Doty C et al (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157

    Article  CAS  PubMed  Google Scholar 

  12. Meng C, Liu C, Chen L et al (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031

    Article  CAS  PubMed  Google Scholar 

  13. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  14. Massaro A, Muñoz-García AB, Maddalena P et al (2020) First-principles study of Na insertion at TiO2 anatase surfaces: new hints for Na-ion battery design. Nanoscale Adv 2:2745–2751

    Article  CAS  Google Scholar 

  15. Bella F, Muñoz-García AB, Colò F et al (2018) Combined structural, chemometric, and electrochemical investigation of vertically aligned TiO2 nanotubes for Na-ion batteries. ACS Omega 3:8440–8450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pedico A, Lamberti A, Gigot A et al (2018) High-performing and stable wearable supercapacitor exploiting rGO aerogel decorated with copper and molybdenum sulfides on carbon fibers. ACS Appl Energy Mater 1:4440–4447

    Article  CAS  Google Scholar 

  17. Zolin L, Nair JR, Beneventi D et al (2016) A simple route toward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design. Carbon N Y 107:811–822

    Article  CAS  Google Scholar 

  18. Lefrançois Perreault L, Colò F, Meligrana G et al (2018) Spray-dried mesoporous mixed Cu-Ni oxide@graphene nanocomposite microspheres for high power and durable Li-ion battery anodes. Adv Energy Mater 8:1802438

    Article  CAS  Google Scholar 

  19. Wang S, Liu X, Duan H et al (2021) Fe3C/Fe nanoparticles embedded in N-doped porous carbon nanosheets and graphene: a thin functional interlayer for PP separator to boost performance of Li-S batteries. Chem Eng J 415:129001.

  20. Shi X, Pu Z, Chi B et al (2021) Nitrogen and atomic Fe dual-doped porous carbon nanocubes as superior electrocatalysts for acidic H2–O2 PEMFC and alkaline Zn-air battery. J Energy Chem 59:388–395

    Article  Google Scholar 

  21. Suriyakumar S, Gopi S, Kathiresan M et al (2018) Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim Acta 285:355–364

    Article  CAS  Google Scholar 

  22. Cao W, Han M, Qin L et al (2019) Synthesis of zeolitic imidazolate framework-67 nanocube wrapped by graphene oxide and its application for supercapacitors. J Solid State Electrochem 23:325–334

    Article  CAS  Google Scholar 

  23. Wang Y, Liu Y, Wang H et al (2019) Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl Energy Mater 2:2063–2071

    Article  CAS  Google Scholar 

  24. Adarsh NN (2017) 7 - Metal–Organic Framework (MOF)–Derived metal oxides for supercapacitors. In: Dubal DP, Gomez-Romero P (eds) Metal oxides in supercapacitors. Elsevier, pp 165–192

  25. Masoomi MY, Morsali A, Junk PC (2015) Rapid mechanochemical synthesis of two new Cd(ii)-based metal–organic frameworks with high removal efficiency of Congo red. CrystEngComm 17:686–692

    Article  CAS  Google Scholar 

  26. Wu J-Y, Chao T-C, Zhong M-S (2013) Influence of counteranions on the structural modulation of silver–di(3-pyridylmethyl)amine coordination polymers. Cryst Growth Des 13:2953–2964

    Article  CAS  Google Scholar 

  27. Campagnol N, Souza ER, De Vos DE et al (2014) Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chem Commun 50:12545–12547

    Article  CAS  Google Scholar 

  28. Saidi M, Benomara A, Mokhtari M, Boukli-Hacene L (2020) Sonochemical synthesis of Zr-fumaric based metal-organic framework (MOF) and its performance evaluation in methyl violet 2B decolorization by photocatalysis. React Kinet Mech Catal 131:1009–1021

    Article  CAS  Google Scholar 

  29. Shi C, Wang X, Gao Y et al (2017) Nickel metal-organic framework nanoparticles as electrode materials for Li-ion batteries and supercapacitors. J Solid State Electrochem 21:2415–2423

    Article  CAS  Google Scholar 

  30. Xuan W, Ramachandran R, Zhao C, Wang F (2018) Influence of synthesis temperature on cobalt metal-organic framework (Co-MOF) formation and its electrochemical performance towards supercapacitor electrodes. J Solid State Electrochem 22:3873–3881

    Article  CAS  Google Scholar 

  31. Feng SH, Li GH (2017) Chapter 4 - Hydrothermal and solvothermal syntheses. In: Xu R, Xu Y (eds) Modern inorganic synthetic chemistry (Second Edition), Second Edi. Elsevier, Amsterdam, pp 73–104

  32. Yu H, Fan H, Yadian B et al (2015) General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties. ACS Appl Mater Interfaces 7:26751–26757

    Article  CAS  PubMed  Google Scholar 

  33. Govindan R, Hong XJ, Sathishkumar P et al (2020) Construction of metal-organic framework-derived CeO2/C integrated MoS2 hybrid for high-performance asymmetric supercapacitor. Electrochim Acta 353:136502

  34. Jiang Z-J, Cheng S, Rong H et al (2017) General synthesis of MFe2O4/carbon (M = Zn, Mn Co, Ni) spindles from mixed metal organic frameworks as high performance anodes for lithium ion batteries. J Mater Chem A 5:23641–23650

    Article  CAS  Google Scholar 

  35. Xie W, Wang Y, Zhou J et al (2020) MOF-derived CoFe2O4 nanorods anchored in MXene nanosheets for all pseudocapacitive flexible supercapacitors with superior energy storage. Appl Surf Sci 534:147584

  36. Xia SB, Huang W, Shen X et al (2021) Fabrication of porous Ni/CoFe2O4@C composite for pseudocapacitive lithium storage. J Alloys Compd 854:157177

  37. Sankar KV, Selvan RK, Meyrick D (2015) Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv 5:99959–99967

    Article  CAS  Google Scholar 

  38. Schneemann A, Bon V, Schwedler I et al (2014) Flexible metal–organic frameworks. Chem Soc Rev 43:6062–6096

    Article  CAS  PubMed  Google Scholar 

  39. Vuong G-T, Pham M-H, Do T-O (2013) Synthesis and engineering porosity of a mixed metal Fe2Ni MIL-88B metal–organic framework. Dalt Trans 42:550–557

    Article  CAS  Google Scholar 

  40. Zak AK, Majid WA, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci 13:251–256

    Article  CAS  Google Scholar 

  41. Yang H, Xie Y, Zhu M et al (2019) Hierarchical porous MnCo2O4 yolk–shell microspheres from MOFs as secondary nanomaterials for high power lithium ion batteries. Dalt Trans 48:9205–9213

    Article  CAS  Google Scholar 

  42. Bai Z-Q, Yuan L-Y, Zhu L et al (2015) Introduction of amino groups into acid-resistant MOFs for enhanced U(vi) sorption. J Mater Chem A 3:525–534

    Article  CAS  Google Scholar 

  43. Andrew Lin K-Y, Chang H-A, Hsu C-J (2015) Iron-based metal organic framework{,} MIL-88A{,} as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water. RSC Adv 5:32520–32530

    Article  CAS  Google Scholar 

  44. Vu TA, Le GH, Dao CD et al (2014) Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous photo-Fenton catalyst for reactive dye degradation. RSC Adv 4:41185–41194

    Article  CAS  Google Scholar 

  45. Waldron RD (1955) Infrared Spectra of Ferrites. Phys Rev 99:1727–1735

    Article  CAS  Google Scholar 

  46. Dixit G, Singh JP, Srivastava RC, Agrawal HM (2013) Structural, optical and magnetic studies of Ce doped NiFe2O4 nanoparticles. J Magn Magn Mater 345:65–71

    Article  CAS  Google Scholar 

  47. Chandekar KV, Kant KM (2018) Size-strain analysis and elastic properties of CoFe2O4 nanoplatelets by hydrothermal method. J Mol Struct 1154:418–427

    Article  CAS  Google Scholar 

  48. Sing KS, Everett DH, Haul R et al (1982) Reporting physisorption data for gas/solid systems. Pure Appl Chem 54:2201

    Article  Google Scholar 

  49. Jotania R, Khomane R, Deshpande A et al (2008) Physical and magnetic properties of barium calcium hexaferrite nano-particles synthesized by water-in-oil reverse micelle and co-precipitation techniques. J Sci Res 1:1–13

    Article  CAS  Google Scholar 

  50. Zi Z, Sun Y, Zhu X et al (2009) Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J Magn Magn Mater 321:1251–1255

    Article  CAS  Google Scholar 

  51. Rao KS, Choudary GSVRK, Rao KH, Sujatha C (2015) Structural and magnetic properties of ultrafine CoFe2O4 nanoparticles. Procedia Mater Sci 10:19–27

    Article  CAS  Google Scholar 

  52. Reddy MP, Mohamed AMA, Zhou XB et al (2015) A facile hydrothermal synthesis, characterization and magnetic properties of mesoporous CoFe2O4 nanospheres. J Magn Magn Mater 388:40–44

    Article  CAS  Google Scholar 

  53. Zhang F, Su RL, Shi LZ et al (2013) Hydrothermal Synthesis of CoFe2O4 nanoparticles and their magnetic properties. In: Advances in textile engineering and materials III. Trans Tech Publications Ltd pp 1358–1361

  54. Verma KC, Goyal N, Singh M et al (2019) Hematite α-Fe2O3 induced magnetic and electrical behavior of NiFe2O4 and CoFe2O4 ferrite nanoparticles. Results Phys 13:102212

  55. Shokri A, Shayesteh SF, Boustani K (2018) The role of Co ion substitution in SnFe2O4 spinel ferrite nanoparticles: study of structural, vibrational, magnetic and optical properties. Ceram Int 44:22092–22101

    Article  CAS  Google Scholar 

  56. Caizer C, Stefanescu M (2002) Magnetic characterization of nanocrystalline Ni~Zn ferrite powder prepared by the glyoxylate precursor method. J Phys D Appl Phys 35:3035–3040

    Article  CAS  Google Scholar 

  57. Vijaya JJ, Sekaran G, Bououdina M (2015) Effect of Cu2+ doping on structural, morphological, optical and magnetic properties of MnFe2O4 particles/sheets/flakes-like nanostructures. Ceram Int 41:15–26

    Article  CAS  Google Scholar 

  58. Ali R, Khan MA, Manzoor A et al (2017) Structural and electromagnetic characterization of Co-Mn doped Ni-Sn ferrites fabricated via micro-emulsion route. J Magn Magn Mater 441:578–584

    Article  CAS  Google Scholar 

  59. Bedia J, Muelas-Ramos V, Peñas-Garzón M et al (2019) A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 9:52–94

    Article  CAS  Google Scholar 

  60. Alvaro M, Carbonell E, Ferrer B et al (2007) Semiconductor behavior of a metal-organic framework (MOF). Chem – A Eur J 13:5106–5112

  61. Vuong G-T, Pham M-H, Do T-O (2013) Direct synthesis and mechanism of the formation of mixed metal Fe2Ni-MIL-88B. CrystEngComm 15:9694–9703

    Article  CAS  Google Scholar 

  62. Holinsworth BS, Mazumdar D, Sims H et al (2013) Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl Phys Lett 103:82406

    Article  CAS  Google Scholar 

  63. Tauc J (1974) Optical properties of amorphous semiconductors. In: Tauc J (ed) Amorphous and Liquid Semiconductors. Springer, US, Boston, MA, pp 159–220

    Chapter  Google Scholar 

  64. Loan NTT, Lan NTH, Hang NTT et al (2019) CoFe2O4 nanomaterials: effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-fenton properties. Processes 7:885

    Article  CAS  Google Scholar 

  65. Habibi MH, Parhizkar HJ (2014) FTIR and UV–vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe2O4 from CoCl2 and FeCl3. Spectrochim Acta Part A Mol Biomol Spectrosc 127:102–106

    Article  CAS  Google Scholar 

  66. Kalam A, Al-Sehemi AG, Assiri M et al (2018) Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light. Results Phys 8:1046–1053

    Article  Google Scholar 

  67. Yuliantika D, Taufiq A, Hidayat A et al (2019) Exploring structural properties of cobalt ferrite nanoparticles from natural sand. IOP Conf Ser Mater Sci Eng 515:12047

    Article  CAS  Google Scholar 

  68. Kim J-H, Zhu K, Yan Y et al (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano Lett 10:4099–4104

    Article  CAS  PubMed  Google Scholar 

  69. Gao H, Xiang J, Cao Y (2017) Hierarchically porous CoFe2O4 nanosheets supported on Ni foam with excellent electrochemical properties for asymmetric supercapacitors. Appl Surf Sci 413:351–359

    Article  CAS  Google Scholar 

  70. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. ChemSusChem 5:480–499

    Article  CAS  PubMed  Google Scholar 

  71. Rani BJ, Ravina M, Saravanakumar B et al (2018) Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles. Nano-Structures & Nano-Objects 14:84–91

    Article  CAS  Google Scholar 

  72. Hu W, Chen R, Xie W et al (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces 6:19318–19326

    Article  CAS  PubMed  Google Scholar 

  73. Chen H, Jiang J, Zhang L et al (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883

    Article  CAS  PubMed  Google Scholar 

  74. Cao H, Wu N, Liu Y et al (2017) Facile synthesis of rod-like manganese molybdate crystallines with two-dimentional nanoflakes for supercapacitor application. Electrochim Acta 225:605–613

    Article  CAS  Google Scholar 

  75. Huang A, He Y, Zhou Y et al (2019) A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J Mater Sci 54:949–973

    Article  CAS  Google Scholar 

  76. Sun Y, Guo S, Li W et al (2018) A green and template-free synthesis process of superior carbon material with ellipsoidal structure as enhanced material for supercapacitors. J Power Sources 405:80–88

    Article  CAS  Google Scholar 

  77. Heydari N, Kheirmand M, Heli H (2019) A nanocomposite of CoFe2O4-carbon microspheres for electrochemical energy storage applications. Int J Green Energy 16:476–482

    Article  CAS  Google Scholar 

  78. El-badawy FM, Mohamed MA, El-Desoky HS (2020) Fabrication of an electrochemical sensor based on manganese oxide nanoparticles supported on reduced graphene oxide for determination of subnanomolar level of anti-hepatitis C daclatasvir in the formulation and biological models. Microchem J 157:104914

  79. Gong Y, Li D, Fu Q, Pan C (2015) Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog Nat Sci Mater Int 25:379–385

    Article  CAS  Google Scholar 

  80. Wei C, Sun S, Mandler D et al (2019) Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem Soc Rev 48:2518–2534

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Guilan Research Council for the support of this work. Also, we thank Ali Monemdjou for his assistance in the fabrication of ASC device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Mazloom.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, M., Mazloom, J. Electrochemical performance of spindle-like Fe2Co-MOF and derived magnetic yolk-shell CoFe2O4 microspheres for supercapacitor applications. J Solid State Electrochem 25, 2189–2200 (2021). https://doi.org/10.1007/s10008-021-04989-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04989-9

Keywords

Navigation