Skip to main content
Log in

TiO2/CeO2-CePO4-decorated enzymatic glucose biosensors operating in oxygen-restrictive environments

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The detection of glucose plays an important role in monitoring and controlling diabetes as well as its complications caused by high blood glucose levels. There have been a lot of research on glucose sensors and integrated flexible sensing platforms; however, the detection in oxygen-restrictive environments is few reported. Herein, we described the use of a novel system made up of TiO2 and ceria-cerium phosphate (CeO2-CePO4) composite nanostructures synthesized by a simple procedure to address the oxygen dependence problem confronted in the first-generation amperometric glucose biosensors. The enzymatic activity of sensors was tested in both oxygen-rich and restrictive environments. Our results showed that the resulting composites present good electro-catalytic activity towards glucose oxidation. The electrodes decorated by TiO2/CeO2-CePO4 showed a wide linear range from 0.1 to 1.7 mM with a low detection limit of 17.1 μM while the CeO2-CePO4 showed the linear range of 0.1–2.5 mM with limit of detection of 58.0 μM in oxygen-rich environment. Two types of decorated electrodes both responded to glucose well under the oxygen-restrictive environment but former showed better response performance. The as-fabricated electrodes also owned the good anti-interference, stability, and reproducibility. This strategy promises for increasing the sensitivity of glucose biosensors and provides more opportunities for operation in oxygen-restrictive conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Berkkan A, Seçkin Aİ, Pekmez K, Tamer U (2010) Amperometric enzyme electrode for glucose determination based on poly(pyrrole-2-aminobenzoic acid). J Solid State Electrochem 14(6):975–980

    Article  CAS  Google Scholar 

  2. Yan X, Yang J, Ma L, Tong X, Wang Y, Jin G, Guo X-Y (2015) Size-controlled synthesis of Cu2O nanoparticles on reduced graphene oxide sheets and their application as non-enzymatic glucose sensor materials. J Solid State Electrochem 19(10):3195–3199

    Article  CAS  Google Scholar 

  3. Wu Q, Wang L, Yu H, Wang J, Chen Z (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111(12):7855–7875

    Article  CAS  PubMed  Google Scholar 

  4. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    Article  CAS  PubMed  Google Scholar 

  5. Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56(4):667–671

    Article  CAS  PubMed  Google Scholar 

  6. He H, Xu X, Wu H, Jin Y (2012) Enzymatic plasmonic engineering of Ag/Au bimetallic nanoshells and their use for sensitive optical glucose sensing. Adv Mater 24(13):1736–1740

    Article  CAS  PubMed  Google Scholar 

  7. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763

    Article  CAS  PubMed  Google Scholar 

  8. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382

    Article  CAS  PubMed  Google Scholar 

  9. Xu C, Song Z, Xiang Q, Jin J, Feng X (2016) A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. Nanoscale 8(14):7391–7395

    Article  CAS  PubMed  Google Scholar 

  10. Han X, Zhu Y, Yang X, Zhang J, Li C (2011) Dendrimer-encapsulated Pt nanoparticles on mesoporous silica for glucose detection. J Solid State Electrochem 15(3):511–517

    Article  CAS  Google Scholar 

  11. Medeiros NG, Ribas VC, Lavayen V, Da Silva JA (2016) Synthesis of flower-like cuo hierarchical nanostructures as an electrochemical platform for glucose sensing. J Solid State Electrochem 20(9):2419–2426

    Article  CAS  Google Scholar 

  12. Martín M, O’Neill RD, González-Mora JL, Salazar P (2014) The use of fluorocarbons to mitigate the oxygen dependence of glucose microbiosensors for neuroscience applications. J Electrochem Soc 161(10):H689–H695

    Article  Google Scholar 

  13. Chen D-J, Lu Y-H, Wang A-J, Feng J-J, Huo T-T, Dong W-J (2012) Facile synthesis of ultra-long Cu microdendrites for the electrochemical detection of glucose. J Solid State Electrochem 16(4):1313–1321

    Article  CAS  Google Scholar 

  14. Chen L, Xie H, Li J (2012) Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode. J Solid State Electrochem 16(10):3323–3329

    Article  CAS  Google Scholar 

  15. Hovancová J, Šišoláková I, Oriňaková R, Oriňak A (2017) Nanomaterial-based electrochemical sensors for detection of glucose and insulin. J Solid State Electrochem 21(8):2147–2166

    Article  Google Scholar 

  16. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45

    Article  CAS  PubMed  Google Scholar 

  17. Huang F, Wang F, Feng S, Li Y, Li S, Li Y (2013) Direct electrochemistry and electrochemical biosensing of glucose oxidase based on CdSe@CdS quantum dots and MWNT-modified electrode. J Solid State Electrochem 17(5):1295–1301

    Article  CAS  Google Scholar 

  18. Li S-J, Chen T-W, Xia N, Hou Y-L, Du J-J, Liu L (2013) Direct electrochemistry of glucose oxidase on sulfonated graphene/gold nanoparticle hybrid and its application to glucose biosensing. J Solid State Electrochem 17(9):2487–2494

    Article  CAS  Google Scholar 

  19. Liu L, Cheng Y, Sun F, Yang J, Wu Y (2012) Enhanced direct electron transfer of glucose oxidase based on a protic ionic liquid modified electrode and its biosensing application. J Solid State Electrochem 16(3):1003–1009

    Article  CAS  Google Scholar 

  20. Lee H, Hong YJ, Baik S, Hyeon T, Kim DH (2018) Enzyme-based glucose sensor: from invasive to wearable device. Advanced healthcare materials 7(8):e1701150

    Article  PubMed  Google Scholar 

  21. Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3(14):4473–4491

    Article  CAS  Google Scholar 

  22. Harper A, Anderson MR (2010) Electrochemical glucose sensors—developments using electrostatic assembly and carbon nanotubes for biosensor construction. Sensors 10(9):8248–8274

    Article  CAS  PubMed  Google Scholar 

  23. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482–2505

    Article  CAS  PubMed  Google Scholar 

  24. Chen D, Huang Y, Jiang H, Yasen W, Guo D, Su Y, Xue B, Jin X, Zhu X (2018) Fabrication of activity-reporting glucose oxidase nanocapsules with oxygen-independent fluorescence variation. ACS Appl Mater Interfaces 10(31):26005–26015

    Article  CAS  PubMed  Google Scholar 

  25. GS S, CV A, Mathew BB (2014) Biosensors: a modern day achievement. Journal of Instrumentation Technology 2(1):26–39

    Google Scholar 

  26. Narayanan JS, Anjalidevi C, Dharuman V (2013) Nonenzymatic glucose sensing at ruthenium dioxide–poly(vinyl chloride)–Nafion composite electrode. J Solid State Electrochem 17(4):937–947

    Article  CAS  Google Scholar 

  27. Yu Z, Kong C, Lv J, Ma B, Zhang X, Yang Z (2020) Ultrathin CuxO nanoflakes anchored Cu2O nanoarray for high-performance non-enzymatic glucose sensor. J Solid State Electrochem 24(3):583–590

    Article  CAS  Google Scholar 

  28. Gough DA, Lucisano JY, Tse PHS (1985) Two-dimensional enzyme electrode sensor for glucose. Anal Chem 57(12):2351–2357

    Article  CAS  PubMed  Google Scholar 

  29. Reach G, Wilson GS (1992) Can continuous glucose monitoring be used for the treatment of diabetes? Anal Chem 64(6):381A–386A

    CAS  PubMed  Google Scholar 

  30. Cui Y, Barford JP, Renneberg R (2006) Development of an oxygen-rich biosensor using enzymatic reaction. Biotechnol Lett 28(22):1835–1840

    Article  CAS  PubMed  Google Scholar 

  31. Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39(7):1180–1218

    Article  CAS  Google Scholar 

  32. Toghill K, Compton R (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci Int J 5:1246–1301

    CAS  Google Scholar 

  33. Wolfart F, Maciel A, Nagata N, Vidotti M (2013) Electrocatalytical properties presented by Cu/Ni alloy modified electrodes toward the oxidation of glucose. J Solid State Electrochem 17(5):1333–1338

    Article  CAS  Google Scholar 

  34. Karimi A, Othman A, Andreescu S (2016) Portable enzyme-paper biosensors based on redox-active CeO2 nanoparticles. Methods Enzymol 571:177–195

    Article  CAS  PubMed  Google Scholar 

  35. Charbgoo F, Ramezani M, Darroudi M (2017) Bio-sensing applications of cerium oxide nanoparticles: advantages and disadvantages. Biosens Bioelectron 96:33–43

    Article  CAS  PubMed  Google Scholar 

  36. Vinothkumar G, Amalraj R, Babu KS (2017) Fuel-oxidizer ratio tuned luminescence properties of combustion synthesized Europium doped cerium oxide nanoparticles and its effect on antioxidant properties. Ceram Int 43(7):5457–5466

    Article  CAS  Google Scholar 

  37. Sardesai NP, Karimi A, Andreescu S (2014) Engineered Pt-doped nanoceria for oxidase-based bioelectrodes operating in oxygen-deficient environments. ChemElectroChem 1(12):2082–2088

    Article  CAS  Google Scholar 

  38. Zhou Y, Uzun SD, Watkins NJ, Li S, Li W, Briseno AL, Carter KR, Watkins JJ (2019) Three-dimensional CeO2 woodpile nanostructures to enhance performance of enzymatic glucose biosensors. ACS Appl Mater Interfaces 11(2):1821–1828

    Article  CAS  PubMed  Google Scholar 

  39. Sung M-C, Lee G-H, Kim D-W (2019) CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction. J Alloys Compd 800:450–455

    Article  CAS  Google Scholar 

  40. Uzunoglu A, Stanciu LA (2016) Novel CeO2-CuO-decorated enzymatic lactate biosensors operating in low oxygen environments. Anal Chim Acta 909:121–128

    Article  CAS  PubMed  Google Scholar 

  41. Uzunoglu A, Zhang H, Andreescu S, Stanciu LA (2015) CeO2–MOx(M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity. J Mater Sci 50(10):3750–3762

    Article  CAS  Google Scholar 

  42. Vinothkumar G, Lalitha AI, Suresh Babu K (2019) Cerium phosphate-cerium oxide heterogeneous composite nanozymes with enhanced peroxidase-like biomimetic activity for glucose and hydrogen peroxide sensing. Inorg Chem 58(1):349–358

    Article  CAS  PubMed  Google Scholar 

  43. Li G, Chao K, Peng H, Chen K, Zhang Z (2008) Facile synthesis of CePO4 nanowires attached to CeO2 octahedral micrometer crystals and their enhanced photoluminescence properties. J Phys Chem C 112(42):16452–16456

    Article  CAS  Google Scholar 

  44. Al-Agel FA, Al-Arfaj E, Al-Ghamdi AA, Stein BD, Losovyj Y, Bronstein LM, Shokr FS, Mahmoud WE (2015) Structure and magnetic properties of diluted magnetic metal oxides based on Cu-doped CeO2 nanopowders. Ceramics International 41(1, Part B):1115–1119

    Article  CAS  Google Scholar 

  45. Asuvathraman R, Gnanasekar KI, Clinsha PC, Ravindran TR, Govindan Kutty KV (2015) Investigations on the charge compensation on Ca and U substitution in CePO4 by using XPS, XRD and Raman spectroscopy. Ceramics International 41(3, Part A):3731–3739

    Article  CAS  Google Scholar 

  46. Kitsuda M, Fujihara S (2011) Quantitative luminescence switching in CePO4:Tb by redox reactions. J Phys Chem C 115(17):8808–8815

    Article  CAS  Google Scholar 

  47. Celebioglu A, Vempati S, Ozgit-Akgun C, Biyikli N, Uyar T (2014) Water-soluble non-polymeric electrospun cyclodextrin nanofiber template for the synthesis of metal oxide tubes by atomic layer deposition. RSC Adv 4(106):61698–61705

    Article  CAS  Google Scholar 

  48. Balamurugan A, Chen S-M (2007) Silicomolybdate doped polypyrrole film modified glassy carbon electrode for electrocatalytic reduction of Cr(VI). J Solid State Electrochem 11(12):1679–1687

    Article  CAS  Google Scholar 

  49. Doménech A, García H, Marquet J, Bourdelande JL, Herance JR (2006) Modelling electrocatalysis of hydroquinone oxidation by nicotinamide adenine dinucleaotide coenzyme encapsulated within SBA-15 and MCM-41 mesoporous aluminosilicates. Electrochim Acta 51(23):4897–4908

    Article  Google Scholar 

  50. Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F (2000) Modelling of solid state voltammetry of immobilized microcrystals assuming an initiation of the electrochemical reaction at a three-phase junction. J Solid State Electrochem 4(6):314–324

    Article  Google Scholar 

  51. Meng F, Miao H, Shi J, Hu Z, Li G, Ding Y (2017) The synthesis of carbon/cerium oxide composites clusters with the assistance of the glucaminium-based surfactant and their electrochemical performance in the glucose monitoring. J Alloys Compd 713:125–131

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant 2018YFC1901202), NSF of China (81771976), Fundamental Research Funds for the Central Universities, and the joint fund of Southeast University and Nanjing Medical University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by JX and KY. The first draft of the manuscript was written by JX and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhifei Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Yang, K., Zhang, X. et al. TiO2/CeO2-CePO4-decorated enzymatic glucose biosensors operating in oxygen-restrictive environments. J Solid State Electrochem 25, 1937–1947 (2021). https://doi.org/10.1007/s10008-021-04956-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04956-4

Keywords

Navigation