Skip to main content

Advertisement

Log in

The effect of synthesis and zirconium doping on the performance of nickel-rich NCM622 cathode materials for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Among the cathode materials for advanced Li-ion batteries, nickel-rich Ni-Co-Mn (NCM) LiNixCoyMnyO2 (x > 0.5, x + 2y = 1) attracts great interest as promising materials owing to their high capacity, low cost, good cycling stability, safety and the fact that their stable capacity can be extracted by charging up to 4.3 V vs. Li. In this work, the effect of the synthesis route—freeze-drying, self-combustion, solid state and co-precipitation on the performance of NCM622 (LiNixCoyMnyO2, x = 0.6, y = 0.2) cathodes—in Li cells was thoroughly studied. The material prepared by freeze-drying exhibited superior electrochemical properties. The effect of in situ and ex situ Zr4+ cations doping on the electrodes’ capacity, stability and average voltage was also studied. Doping via a top–down, ex situ mode improved the performance in terms of capacity stabilization, whereas electrodes comprising materials that were doped via a bottom–up in situ approach showed stable average voltage upon prolonged cycling. These effects are discussed and explained herein.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  2. Kim T, Song W, Son DY, Ono LK, Qi Y (2019) Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A 7(7):2942–2964

    Article  CAS  Google Scholar 

  3. Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2(1):196–223

    Article  CAS  Google Scholar 

  4. Kim J, Lee H, Cha H et al (2018) Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater 8

  5. Schipper F, Erickson EM, Erk C, Shin JY, Chesneau FF, Aurbach D (2017) Review—Recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164(1):A6220–A6228. https://doi.org/10.1149/2.0351701jes

    Article  CAS  Google Scholar 

  6. Bak SM, Hu E, Zhou Y, Yu X, Senanayake SD, Cho SJ, Kim KB, Chung KY, Yang XQ, Nam KW (2014) Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl Mater Interfaces 6(24):22594–22601. https://doi.org/10.1021/am506712c

    Article  CAS  PubMed  Google Scholar 

  7. Zheng J, Gu M, Genc A, Xiao J, Xu P, Chen X, Zhu Z, Zhao W, Pullan L, Wang C, Zhang JG (2014) Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett 14(5):2628–2635. https://doi.org/10.1021/nl500486y

    Article  CAS  PubMed  Google Scholar 

  8. Ryu HH, Park KJ, Yoon CS, Sun YK (2018) Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater 30(3):1155–1163. https://doi.org/10.1021/acs.chemmater.7b05269

    Article  CAS  Google Scholar 

  9. Chen Z, Kim GT, Guang Y, Bresser D, Diemant T, Huang Y, Copley M, Behm RJ, Passerini S, Shen Z (2018) Manganese phosphate coated Li[Ni0.6Co0.2Mn0.2]O2 cathode material: towards superior cycling stability at elevated temperature and high voltage. J Power Sources 402:263–271. https://doi.org/10.1016/j.jpowsour.2018.09.049

    Article  CAS  Google Scholar 

  10. Zhao W, Zheng J, Zou L, Jia H, Liu B, Wang H, Engelhard MH, Wang C, Xu W, Yang Y, Zhang JG (2018) High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases. Adv Energy Mater 8(19):8. https://doi.org/10.1002/aenm.201800297

    Article  CAS  Google Scholar 

  11. Bai Y, Li Y, Wu C, Lu J, Li H, Liu Z, Zhong Y, Chen S, Zhang C, Amine K, Wu F (2015) Lithium-rich nanoscale Li1.2Mn0.54Ni0.13Co0.13O2 cathode material prepared by co-precipitation combined freeze drying (CP-FD) for lithium-ion batteries. Energy Technol 3(8):843–850. https://doi.org/10.1002/ente.201500030

    Article  CAS  Google Scholar 

  12. Liang L, Du K, Peng Z et al (2014) Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochim Acta 130:82–89. https://doi.org/10.1016/j.electacta.2014.02.100

    Article  CAS  Google Scholar 

  13. Liang L, Du K, Lu W et al (2014) Synthesis and characterization of concentration-gradient LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. J Alloys Compd 613:296–305. https://doi.org/10.1016/j.jallcom.2014.05.027

    Article  CAS  Google Scholar 

  14. Zheng Z, Guo XD, Chou SL, Hua WB, Liu HK, Dou SX, Yang XS (2016) Uniform Ni-rich LiNi0.6Co0.2Mn0.2O2 porous microspheres: facile designed synthesis and their improved electrochemical performance. Electrochim Acta 191:401–410. https://doi.org/10.1016/j.electacta.2016.01.092

    Article  CAS  Google Scholar 

  15. Zhang Y, Cao H, Zhang J, Xia B (2006) Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization. Solid State Ionics 177(37-38):3303–3307. https://doi.org/10.1016/j.ssi.2006.09.008

    Article  CAS  Google Scholar 

  16. Li T, Li X, Wang Z, Guo H, Peng W, Zeng K (2015) Electrochemical properties of LiNi0.6Co0.2Mn0.2O2 as cathode material for Li-ion batteries prepared by ultrasonic spray pyrolysis. Mater Lett 159:39–42. https://doi.org/10.1016/j.matlet.2015.06.075

    Article  CAS  Google Scholar 

  17. Yue P, Wang Z, Peng W, Li L, Guo H, Li X, Hu Q, Zhang Y (2011) Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as cathode material for lithium ion batteries. Scr Mater 65(12):1077–1080. https://doi.org/10.1016/j.scriptamat.2011.09.020

    Article  CAS  Google Scholar 

  18. Xia YF, Nie M, Wang ZB, Yu FD, Zhang Y, Zheng LL, Wu J, Ke K (2015) Structural, morphological and electrochemical investigation of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized in different sintering conditions. Ceram Int 41(9):11815–11823. https://doi.org/10.1016/j.ceramint.2015.05.150

    Article  CAS  Google Scholar 

  19. Gan C, Hu X, Zhan H, Zhou Y (2005) Synthesis and characterization of Li1.2Ni0.6Co0.2Mn0.2O2+δ as a cathode material for secondary lithium batteries. Solid State Ionics 176(7-8):687–692. https://doi.org/10.1016/j.ssi.2004.10.021

    Article  CAS  Google Scholar 

  20. Wang L, Wu B, Mu D, Liu X, Peng Y, Xu H, Liu Q, Gai L, Wu F (2016) Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries. J Alloys Compd 674:360–367. https://doi.org/10.1016/j.jallcom.2016.03.061

    Article  CAS  Google Scholar 

  21. Ju X, Huang H, He W, Zheng H, Deng P, Li S, Qu B, Wang T (2018) Surfactant-assisted synthesis of high energy {010} facets beneficial to Li-ion transport kinetics with layered LiNi0.6Co0.2Mn0.2O2. ACS Sustain Chem Eng 6(5):6312–6320. https://doi.org/10.1021/acssuschemeng.8b00126

    Article  CAS  Google Scholar 

  22. Penki TR, Nayak PK, Levi E, Grinblat J, Elias Y, Luski S, Markovsky B, Aurbach D (2018) Reaching highly stable specific capacity with integrated 0.6Li2MnO3:0.4LiNi0.6Co0.2Mn0.2O2 cathode materials. ChemElectroChem 5(8):1137–1146. https://doi.org/10.1002/celc.201701193

    Article  CAS  Google Scholar 

  23. Lee SW, Kim H, Kim MS, Youn HC, Kang K, Cho BW, Roh KC, Kim KB (2016) Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J Power Sources 315:261–268. https://doi.org/10.1016/j.jpowsour.2016.03.020

    Article  CAS  Google Scholar 

  24. Yue P, Wang Z, Guo H, Wu F, He Z, Li X (2012) Effect of synthesis routes on the electrochemical performance of Li[Ni 0.6Co0.2Mn0.2]O2 for lithium ion batteries. J Solid State Electrochem 16(12):3849–3854. https://doi.org/10.1007/s10008-012-1823-3

    Article  CAS  Google Scholar 

  25. Eilers-Rethwisch M, Winter M, Schappacher FM (2018) Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials. J Power Sources 387:101–107. https://doi.org/10.1016/j.jpowsour.2018.02.080

    Article  CAS  Google Scholar 

  26. Liu S, Dang Z, Liu D, Zhang C, Huang T, Yu A (2018) Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures. J Power Sources 396:288–296. https://doi.org/10.1016/j.jpowsour.2018.06.052

    Article  CAS  Google Scholar 

  27. Schipper F, Dixit M, Kovacheva D, Talianker M, Haik O, Grinblat J, Erickson EM, Ghanty C, Major DT, Markovsky B, Aurbach D (2016) Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J Mater Chem A 4(41):16073–16084. https://doi.org/10.1039/c6ta06740a

    Article  CAS  Google Scholar 

  28. Xue L, Li Y, Xu B, Chen Y, Cao G, Li J, Deng S, Chen Y, Chen J (2018) Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage. J Alloys Compd 748:561–568. https://doi.org/10.1016/j.jallcom.2018.03.192

    Article  CAS  Google Scholar 

  29. Sun H-B, Zhou Y-X, Zhang L-L, Yang XL, Cao XZ, Arave H, Fang H, Liang G (2017) Investigations on Zr incorporation into Li3V2(PO4)3/C cathode materials for lithium ion batteries. Phys Chem Chem Phys 19(7):5155–5162. https://doi.org/10.1039/c6cp07760a

    Article  CAS  PubMed  Google Scholar 

  30. Schipper F, Bouzaglo H, Dixit M et al (2018) From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater 8. https://doi.org/10.1002/aenm.201701682

  31. Wu Z, Ji S, Hu Z, Zheng J, Xiao S, Lin Y, Xu K, Amine K, Pan F (2016) Pre-lithiation of Li(Ni1-x-yMnxCoy)O2 materials enabling enhancement of performance for Li-ion battery. ACS Appl Mater Interfaces 8(24):15361–15368. https://doi.org/10.1021/acsami.6b03730

    Article  CAS  PubMed  Google Scholar 

  32. Liu W, Li X, Xiong D et al (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. ArticleInfo. https://doi.org/10.1016/j.nanoen.2017.11.010

  33. Shim JH, Kim YM, Park M, Kim J, Lee S (2017) Reduced graphene oxide-wrapped nickel-rich cathode materials for lithium ion batteries. ACS Appl Mater Interfaces 9(22):18720–18729. https://doi.org/10.1021/acsami.7b02654

    Article  CAS  PubMed  Google Scholar 

  34. Liu S, Zhang C, Su Q, Li L, Su J, Huang T, Chen Y, Yu A (2017) Enhancing electrochemical performance of LiNi0.6Co0.2Mn0.2O2 by lithium-ion conductor surface modification. Electrochim Acta 224:171–177. https://doi.org/10.1016/j.electacta.2016.12.024

    Article  CAS  Google Scholar 

  35. Huang Z, Wang Z, Jing Q, Guo H, Li X, Yang Z (2016) Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material. Electrochim Acta 192:120–126. https://doi.org/10.1016/j.electacta.2016.01.139

    Article  CAS  Google Scholar 

  36. Xu B, Fell CR, Chi M, Meng YS (2011) Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci 4(6):2223–2233. https://doi.org/10.1039/c1ee01131f

    Article  CAS  Google Scholar 

  37. Huang Z, Wang Z, Zheng X, Guo H, Li X, Jing Q, Yang Z (2015) Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim Acta 182:795–802. https://doi.org/10.1016/j.electacta.2015.09.151

    Article  CAS  Google Scholar 

  38. Xu L, Zhou F, Kong J, Zhou H, Zhang Q, Wang Q, Yan G (2018) Influence of precursor phase on the structure and electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 cathode materials. Solid State Ionics 324:49–58. https://doi.org/10.1016/j.ssi.2018.06.010

    Article  CAS  Google Scholar 

  39. Zhao T, Chen S, Li L, Zhang X, Chen R, Belharouak I, Wu F, Amine K (2013) Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. J Power Sources 228:206–213. https://doi.org/10.1016/j.jpowsour.2012.11.099

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by the Israel Committee for High Education and the Israeli Prime Minister office in the framework of the INREP project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Aurbach.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 2.38 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penki, T.R., Gilady, S., Nayak, P.K. et al. The effect of synthesis and zirconium doping on the performance of nickel-rich NCM622 cathode materials for Li-ion batteries. J Solid State Electrochem 25, 1513–1530 (2021). https://doi.org/10.1007/s10008-021-04933-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04933-x

Keywords

Navigation