Skip to main content

Advertisement

Log in

Nitrogen-doped microporous carbon with narrow pore size distribution as sulfur host to encapsulate small sulfur molecules for highly stable lithium-sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) battery with high theoretical energy density has been considered as an important energy storage system. However, its application has been limited by low cycling stability and rapid capacity decay due to the shuttle of lithium polysulfide (Li2Sn, n > 5). These problems can be solved using small sulfur molecules (S2–4) as the active material, while synthesis of carbon hosts with suitable pores size and narrow pore distribution to encapsulate small sulfur molecules are still challenging. Here, we report a novel nitrogen-doping microporous carbon (NDMC) sulfur host with narrow micropore unimodal size distribution centered at 0.57 nm. By accommodating small sulfur molecules (S2–4) within the subnanopores of NDMC, the formation and shuttle of soluble lithium polysulfide (LiPS) can be avoided. The cathode shows only a long potential plateau due to the direct conversion from S2–4 to Li2S. In carbonate-based electrolyte, the NDMC/S-2 cathode remains a stable and reversible capacity of 902 mAh g−1 at 0.2 C with 100% Coulombic efficiency after 500 cycles, and capacity fading per cycle is only around 0.02%. Besides, an excellent capacity of 511.8 mAh g−1 is achieved even at an ultrahigh rate of 10 C, demonstrating a superior rate capability performance. This NDMC/S composite also shows excellent cycling stability in ether-based electrolyte. All the above demonstrate the NDMC has great potential application in Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295

    CAS  Google Scholar 

  2. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302

    CAS  PubMed  Google Scholar 

  3. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    CAS  PubMed  Google Scholar 

  4. Peramunage D, Licht S (1993) A solid sulfur cathode for aqueous batteries. Science 261(5124):1029–1032

    CAS  PubMed  Google Scholar 

  5. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29

    CAS  Google Scholar 

  6. Steudel R, Eckert B (2003) Solid sulfur allotropes sulfur allotropes. In: Steudel R (ed) Elemental Sulfur and Sulfur-Rich Compounds I. Springer, Berlin, Heidelberg, pp 1–80. https://doi.org/10.1007/b12110

    Chapter  Google Scholar 

  7. Manthiram A, Chung S-H, Zu C (2015) Lithium–sulfur batteries: progress and prospectS. Adv Mater 27(12):1980–2006

    CAS  PubMed  Google Scholar 

  8. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032

    CAS  PubMed  Google Scholar 

  9. Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20(44):9821–9826

    CAS  Google Scholar 

  10. He JR, Chen YF, Manthiram A (2018) Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy Environ Sci 11(9):2560–2568

    CAS  Google Scholar 

  11. He JR, Hartmann G, Lee M, Hwang GS, Chen YF, Manthiram A (2019) Freestanding 1 T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ Sci 12(1):344–350

    CAS  Google Scholar 

  12. He JR, Bhargav A, Asl HY, Chen YF, Manthiram A (2020) 1 T ‘-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li-S batteries. Adv Energy Mater 10(23):2001017

    CAS  Google Scholar 

  13. He JR, Bhargav A, Manthiram A (2020) Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium-sulfur batteries. Adv Mater 32(40):2004741

    CAS  Google Scholar 

  14. He JR, Manthiram A (2020) Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor. Adv Energy Mater 10(3):1903241

    CAS  Google Scholar 

  15. Gueon D, Hwang JT, Yang SB, Cho E, Sohn K, Yang D-K, Moon JH (2018) Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium–sulfur battery cathodes. ACS Nano 12(1):226–233

    CAS  PubMed  Google Scholar 

  16. Fang R, Zhao S, Hou P, Cheng M, Wang S, Cheng H-M, Liu C, Li F (2016) 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv Mater 28(17):3374–3382

    CAS  PubMed  Google Scholar 

  17. Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang J-G, Schwenzer B, Liu J (2011) Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem 21(41):16603–16610

    CAS  Google Scholar 

  18. Jin F, Xiao S, Lu L, Wang Y (2016) Efficient activation of high-loading sulfur by small cnts confined inside a large CNT for high-capacity and high-rate lithium–sulfur batteries. Nano Lett 16(1):440–447

    CAS  PubMed  Google Scholar 

  19. Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647

    CAS  PubMed  Google Scholar 

  20. Wu M, Cui Y, Bhargav A, Losovyj Y, Siegel A, Agarwal M, Ma Y, Fu Y (2016) Organotrisulfide: a high capacity cathode material for rechargeable lithium batteries. Angew Chem Int Ed 55(34):10027–10031

    CAS  Google Scholar 

  21. Wang J, Yang J, Xie J, Xu N (2002) A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14(13-14):963–965

    CAS  Google Scholar 

  22. Dokko K, Tachikawa N, Yamauchi K, Tsuchiya M, Yamazaki A, Takashima E, Park J-W, Ueno K, Seki S, Serizawa N (2013) Solvate ionic liquid electrolyte for Li–S batteries. J Electrochem Soc 160(8):A1304–A1310

    CAS  Google Scholar 

  23. Zheng J, Ji G, Fan X, Chen J, Li Q, Wang H, Yang Y, DeMella KC, Raghavan SR, Wang C (2019) High-fluorinated electrolytes for li–s batteries. Adv Energy Mater 9(16):1803774

    Google Scholar 

  24. Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537

    CAS  Google Scholar 

  25. Xin S, Gu L, Zhao N-H, Yin Y-X, Zhou L-J, Guo Y-G, Wan L-J (2012) Smaller sulfur molecules promise better lithium–sulfur batteries. J Am Chem Soc 134(45):18510–18513

    CAS  PubMed  Google Scholar 

  26. Li Z, Yuan L, Yi Z, Sun Y, Liu Y, Jiang Y, Shen Y, Xin Y, Zhang Z, Huang Y (2014) Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv Energy Mater 4(7):1301473

    Google Scholar 

  27. Zheng S, Yi F, Li Z, Zhu Y, Xu Y, Luo C, Yang J, Wang C (2014) Copper-stabilized sulfur-microporous carbon cathodes for Li–S batteries. Adv Funct Mater 24(26):4156–4163

    CAS  Google Scholar 

  28. Moon S, Jung YH, Jung WK, Jung DS, Choi JW, Kim DK (2013) Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv Mater 25(45):6547–6553

    CAS  PubMed  Google Scholar 

  29. Ye H, Yin Y-X, Xin S, Guo Y-G (2013) Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. J Mater Chem A 1(22):6602–6608

    CAS  Google Scholar 

  30. Jiang H-L, Liu B, Lan Y-Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 133(31):11854–11857

    CAS  PubMed  Google Scholar 

  31. Gu X, Wang Y, Lai C, Qiu J, Li S, Hou Y, Martens W, Mahmood N, Zhang S (2015) Microporous bamboo biochar for lithium-sulfur batteries. Nano Res 8(1):129–139

    CAS  Google Scholar 

  32. Li Z, Yin L (2015) Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. ACS Appl Mater Interfaces 7(7):4029–4038

    CAS  PubMed  Google Scholar 

  33. Li X, Cheng X, Gao M, Ren D, Liu Y, Guo Z, Shang C, Sun L, Pan H (2017) Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium–sulfur battery cathodes. ACS Appl Mater Interfaces 9(12):10717–10729

    CAS  PubMed  Google Scholar 

  34. Hao G-P, Mondin G, Zheng Z, Biemelt T, Klosz S, Schubel R, Eychmüller A, Kaskel S (2015) Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture. Angew Chem Int Ed 54(6):1941–1945

    CAS  Google Scholar 

  35. Qiu Y, Li W, Zhao W, Li G, Hou Y, Liu M, Zhou L, Ye F, Li H, Wei Z, Yang S, Duan W, Ye Y, Guo J, Zhang Y (2014) High-Rate, Ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett 14(8):4821–4827

    CAS  PubMed  Google Scholar 

  36. Wang Z, Dong Y, Li H, Zhao Z, Bin Wu H, Hao C, Liu S, Qiu J, Lou XW (2014) Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5(1):5002

    CAS  PubMed  Google Scholar 

  37. Yang J, Xie J, Zhou X, Zou Y, Tang J, Wang S, Chen F, Wang L (2014) Functionalized N-doped porous carbon nanofiber webs for a lithium–sulfur battery with high capacity and rate performance. J Phys Chem C 118(4):1800–1807

    CAS  Google Scholar 

  38. Zhu Q, Zhao Q, An Y, Anasori B, Wang H, Xu B (2017) Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery. Nano Energy 33:402–409

    CAS  Google Scholar 

  39. Meyer B (1976) Elemental sulfur. Chem Rev 76(3):367–388

    CAS  Google Scholar 

  40. Wu ZY, Xu SL, Yan QQ, Chen ZQ, Ding YW, Li C, Liang HW, Yu SH (2018) Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci Adv 4(7):eaat0788

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4). https://doi.org/10.1351/pac198557040603

  42. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    CAS  Google Scholar 

  43. Kurig H, Russina M, Tallo I, Siebenbürger M, Romann T, Lust E (2016) The suitability of infinite slit-shaped pore model to describe the pores in highly porous carbon materials. Carbon 100:617–624

    CAS  Google Scholar 

  44. Preefer MB, Oschmann B, Hawker CJ, Seshadri R, Wudl F (2017) High sulfur content material with stable cycling in lithium-sulfur batteries. Angew Chem 129(47):15314–15318

    Google Scholar 

  45. Daiyan R, Tan X, Chen R, Saputera WH, Tahini HA, Lovell E, Ng YH, Smith SC, Dai L, Lu X, Amal R (2018) Electroreduction of CO2 to CO on a mesoporous carbon catalyst with progressively removed nitrogen moieties. ACS Energy Lett 3(9):2292–2298

    CAS  Google Scholar 

  46. Zhang Y-Z, Zhang Z, Liu S, Li G-R, Gao X-P (2018) Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium–sulfur battery. ACS Appl Mater Interfaces 10(10):8749–8757

    CAS  PubMed  Google Scholar 

  47. Zhang S, Miran MS, Ikoma A, Dokko K, Watanabe M (2014) Protic ionic liquids and salts as versatile carbon precursors. J Am Chem Soc 136(5):1690–1693

    CAS  PubMed  Google Scholar 

  48. Chen J-J, Yuan R-M, Feng J-M, Zhang Q, Huang J-X, Fu G, Zheng M-S, Ren B, Dong Q-F (2015) Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li–S battery. Chem Mater 27(6):2048–2055

    CAS  Google Scholar 

  49. Yuan H, Zhang W, Wang J-g, Zhou G, Zhuang Z, Luo J, Huang H, Gan Y, Liang C, Xia Y, Zhang J, Tao X (2018) Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries. Energy Storage Mater 10:1–9

    Google Scholar 

  50. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46(11):1475–1488

    CAS  Google Scholar 

  51. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    CAS  PubMed  Google Scholar 

  52. Xu Y, Wen Y, Zhu Y, Gaskell K, Cychosz KA, Eichhorn B, Xu K, Wang C (2015) Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries. Adv Funct Mater 25(27):4312–4320

    CAS  Google Scholar 

  53. Li Z, Jiang Y, Yuan L, Yi Z, Wu C, Liu Y, Strasser P, Huang Y (2014) A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 8(9):9295–9303

    CAS  PubMed  Google Scholar 

  54. Yim T, Park M-S, Yu J-S, Kim KJ, Im KY, Kim J-H, Jeong G, Jo YN, Woo S-G, Kang KS, Lee I, Kim Y-J (2013) Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim Acta 107:454–460

    CAS  Google Scholar 

  55. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51772089, 52072118, and 21872046), the Outstanding Youth Scientist Foundation of Hunan Province (Grant No. 2018JJ1009), the Youth 1000 Talent Program of China, the Science and Technology Innovation Platform and Talent Plan of Hunan Province (Grant No. 2017XK2023), the Natural Science Foundation of Hunan Province, the Research and Development Plan of Key Areas in Hunan Province (Grant No. 2019GK2235), and the Key Research and Development Program of Ningxia (2020BDE03007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiwen Wang, Ce Zhang or Shiguo Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 613 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, Z., Zhang, Y. et al. Nitrogen-doped microporous carbon with narrow pore size distribution as sulfur host to encapsulate small sulfur molecules for highly stable lithium-sulfur batteries. J Solid State Electrochem 25, 1293–1302 (2021). https://doi.org/10.1007/s10008-021-04907-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04907-z

Keywords

Navigation