Skip to main content
Log in

MOF-derived ZnO/ZnFe2O4@RGO nanocomposites with high lithium storage performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

ZnO/ZnFe2O4@reduced graphene oxide (RGO) nanocomposites have been successfully synthesized through annealing treatment of Zn/Fe MOF-5@GO composites. The ZnO/ZnFe2O4 nanoparticles with a diameter of 12–15 nm are evenly distributed on the surface of RGO. The ZnO/ZnFe2O4@RGO nanocomposites show superior rate capacity and cyclic stability of 655 mAh/g after 200 cycles at 0.2 A/g for lithium ion battery (LIB) anode. The superior electrochemical property benefits from the unique structure of ZnO/ZnFe2O4@RGO nanocomposites, which can provide a buffer space for volume expansion, and enhance conductivity in the charge/discharge cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JMJS (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  PubMed  Google Scholar 

  2. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506

    Article  CAS  PubMed  Google Scholar 

  3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  4. Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200

    Article  CAS  Google Scholar 

  5. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4(8):2682–2699

    Article  CAS  Google Scholar 

  6. Yang SJ, Nam S, Kim T, Im JH, Jung H, Kang JH, Wi S, Park B, Park CR (2013) Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J Am Chem Soc 135(20):7394–7397

    Article  CAS  PubMed  Google Scholar 

  7. Zhou L, Wu HB, Zhu T, Lou XW (2012) Facile preparation of ZnMn2O4hollow microspheres as high-capacity anodes for lithium-ion batteries. J Mater Chem 22(3):827–829

    Article  CAS  Google Scholar 

  8. Zhang G, Yu L, Wu HB, Hoster HE, Lou XW (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24(34):4609–4613

    Article  CAS  PubMed  Google Scholar 

  9. Yin L, Zhang Z, Li Z, Hao F, Li Q, Wang C, Fan R, Qi Y (2014) Spinel ZnMn2O4 nanocrystal-anchored 3D hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries. Adv Funct Mater 24(26):4176–4185

    Article  CAS  Google Scholar 

  10. Sui J, Zhang C, Hong D, Li J, Cheng Q, Li Z, Cai W (2012) Facile synthesis of MWCNT–ZnFe2O4 nanocomposites as anode materials for lithium ion batteries. J Mater Chem 22(27):13674–13681

    Article  CAS  Google Scholar 

  11. Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S (2013) Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Adv Energy Mater 3(4):513–523

    Article  CAS  Google Scholar 

  12. Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12(6):3005–3011

    Article  CAS  PubMed  Google Scholar 

  13. Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22(18):8916–8921

    Article  CAS  Google Scholar 

  14. Lin J, Zeng C, Wang L, Pan Y, Lin X, Reddy RCK, Cai Y, Su CY (2020) Self-standing MOF-derived LiCoO2 nanopolyhedron on Au-coated copper foam as advanced 3D cathodes for lithium-ion batteries. Appl Mater Today 19:100565

    Article  Google Scholar 

  15. Reddy RCK, Lin J, Chen Y, Zeng C, Lin X, Cai Y, Su CY (2020) Progress of nanostructured metal oxides derived from metal–organic frameworks as anode materials for lithium–ion batteries. Coord Chem Rev 420:213434

    Article  CAS  Google Scholar 

  16. Lin J, Zeng C, Chen Y, Lin X, Xu C, Su CY (2020) In-situ constructing MOF-derived carbon encapsulated LiCoO2 heterostructure as superior cathode for elevated-voltage lithium storage: from experimental to theoretical study. J Mater Chem A 8(14):6607–6618

    Article  CAS  Google Scholar 

  17. Chen Y, Wu J, Yang W, Fu Y, Zhou R, Chen S, Zhang L, Song Y, Wang L (2016) Zn/Fe-MOFs-derived hierarchical ball-in-ball ZnO/ZnFe2O4@carbon nanospheres with exceptional lithium storage performance. J Alloys Compd 688:211–218

    Article  CAS  Google Scholar 

  18. Li Z, Yin L (2015) Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4–ZnO–C on nickel foam as anodes for high performance lithium ion batteries. J Mater Chem A 3(43):21569–21577

    Article  CAS  Google Scholar 

  19. Hou Y, Li XY, Zhao QD, Quan X, Chen GH (2010) Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv Funct Mater 20(13):2165–2174

    Article  CAS  Google Scholar 

  20. Zou F, Hu X, Li Z, Qie L, Hu C, Zeng R, Jiang Y, Huang Y (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater 26(38):6622–6628

    Article  CAS  PubMed  Google Scholar 

  21. Hou L, Lian L, Zhang L, Pang G, Yuan C, Zhang X (2015) Self-sacrifice template fabrication of hierarchical mesoporous bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv Funct Mater 25(2):238–246

    Article  CAS  Google Scholar 

  22. Yuan C, Cao H, Zhu S, Hua H, Hou L (2015) Core–shell ZnO/ZnFe2O4@C mesoporous nanospheres with enhanced lithium storage properties towards high-performance Li-ion batteries. J Mater Chem A 3(40):20389–20398

    Article  CAS  Google Scholar 

  23. Yang X, Xue H, Yang Q, Yuan R, Kang W, Lee CS (2017) Preparation of porous ZnO/ZnFe2O4 composite from metal organic frameworks and its applications for lithium ion batteries. Chem Eng J 308:340–346

    Article  CAS  Google Scholar 

  24. Lian L, Hou L, Zhou L, Wang L, Yuan C (2014) Rapid low-temperature synthesis of mesoporous nanophase ZnFe2O4 with enhanced lithium storage properties for Li-ion batteries. RSC Adv 4(90):49212–49218

    Article  CAS  Google Scholar 

  25. NuLi YN, Chu YQ, Qin QZ (2004) Nanocrystalline ZnFe[sub2]O[sub4] and Ag-doped ZnFe[sub2]O[sub4] films used as new anode materials for Li-ion batteries. J Electrochem Soc 151:1077–1083

    Article  Google Scholar 

  26. Wang M, Ai Z, Zhang L (2008) Generalized preparation of porous nanocrystalline ZnFe2O4 superstructures from zinc ferrioxalate precursor and its superparamagnetic property. J Phys Chem C 112(34):13163–13170

    Article  CAS  Google Scholar 

  27. Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2008) Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim Acta 53(5):2380–2385

    Article  CAS  Google Scholar 

  28. Yuan C, Li J, Hou L, Lin J, Zhang X, Xiong S (2013) Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. J Mater Chem A 1(37):11145–11151

    Article  CAS  Google Scholar 

  29. Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XW (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22(21):4592–4597

    Article  CAS  Google Scholar 

  30. Lv H, Ma L, Zeng P, Ke D, Peng T (2010) Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. J Mater Chem 20(18):3665–3672

    Article  CAS  Google Scholar 

  31. Lin J, Zeng C, Lin X, Xu C, Su CY (2020) CNT-assembled octahedron carbon-encapsulated Cu3P/Cu heterostructure by in situ MOF-derived engineering for superior lithium storage: investigations by experimental implementation and first-principles calculation. Adv Sci 7:2000736–2000749

    Article  CAS  Google Scholar 

  32. Lin X, Lin J, Zeng C, Niu J, Reddy RCK, Liu J, Cai Y, Yuan Z (2020) Copper nanowires and copper foam multifunctional bridges in zeolitic imidazolate framework—derived anode material for superior lithium storage. J Colloid Interface Sci 565:156–166

    Article  CAS  PubMed  Google Scholar 

  33. Wu J, Song Y, Zhou R, Chen S, Zuo L, Hou H, Wang L (2015) Zn–Fe–ZIF-derived porous ZnFe2O4/C@NCNT nanocomposites as anodes for lithium-ion batteries. J Mater Chem A 3(15):7793–7798

    Article  CAS  Google Scholar 

  34. Deng Y, Zhang Q, Tang S, Zhang L, Deng S, Shi Z, Chen G (2011) One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem Commun (Camb) 47(24):6828–6830

    Article  CAS  Google Scholar 

  35. Zhang G, Hou S, Zhang H, Zeng W, Yan F, Li CC, Duan H (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv Mater 27(14):2400–2405

    Article  CAS  PubMed  Google Scholar 

  36. Park Y, Oh M, Kim J (2019) Well-dispersed ZnFe2O4 nanoparticles onto graphene as superior anode materials for lithium ion batteries. Energies 12(2):304–313

    Article  CAS  Google Scholar 

  37. Qu Y, Zhang D, Wang X, Qiu H, Zhang T, Zhang M, Tian G, Yue H, Feng S, Chen G (2017) Porous ZnFe2O4 nanospheres as anode materials for li-ion battery with high performance. J Alloys Compd 721:697–704

    Article  CAS  Google Scholar 

  38. Liu B, Ke S, Zhang X, Cai S, Shao Y, Yu Q, Yan S (2019) A facile synthesis of carbon-encapsulated ZnFe2O4 nanocrystals as anode for lithium-ion batteries. Funct Mater Lett 12:1–4

    Article  Google Scholar 

  39. Feng D, Yang H, Guo X (2019) 3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries. Chem Eng J 355:687–696

    Article  CAS  Google Scholar 

  40. Yu F, Wang X, Du R, Jiang F, Zhou Y (2019) ZnFe2O4 nanoparticles decorated Ti3C2Tx nanosheet as anode materials for enhanced lithium storage. Mater Lett 253:162–165

    Article  CAS  Google Scholar 

  41. Li LL, Jin B, Dou SX, Jiang Q (2017) Facile fabrication of ZnFe2O4-MWCNTs composite as an anode material for rechargeable lithium-ion batteries. ChemistrySelect 2(24):7194–7201

    Article  CAS  Google Scholar 

  42. Li Z, Nie J, Zhao J, Yao S, Wang J, Feng X (2019) Prussian blue-derived transition metal oxide ZnO/ZnFe2O4 microcubes as anode materials for lithium ion batteries. J Mater Sci Mater Electron 30(24):21416–21424

    Article  CAS  Google Scholar 

  43. Fang Z, Zhang L, Qi H, Yue H, Zhang T, Zhao X, Chen G, Wei Y, Wang C, Zhang D (2018) Nanosheet assembled hollow ZnFe2O4 microsphere as anode for lithium-ion batteries. J Alloys Compd 762:480–487

    Article  CAS  Google Scholar 

  44. Pan P, Wang T, Chen L, Wang F, Yang X, Qin C, Ding Y (2018) Crystal-seeds induced construction of ZnO–ZnFe2O4 micro-cubic composites as excellent anode materials for lithium ion battery†. RSC Adv 8(29):16187–16192

    Article  CAS  Google Scholar 

Download references

Funding

This work is partially supported by Key R&D Program of Science and Technology in Jiangxi Province (20192BBE50021), Foundation of Education Department of Jiangxi (190743), and Key R&D Program of Science and Technology in Ganzhou (2019.60).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaokang Li or Jujun Yuan.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, W., Li, X., Li, B. et al. MOF-derived ZnO/ZnFe2O4@RGO nanocomposites with high lithium storage performance. J Solid State Electrochem 25, 1175–1181 (2021). https://doi.org/10.1007/s10008-020-04891-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04891-w

Navigation