Skip to main content

Advertisement

Log in

Preparation and investigation of nanostructured SnO2:Pd/ porous silicon/c-Si heterostructure solar cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We have deposited pure SnO2 and SnO2:Pd nanostructure films on the quartz and porous silicon PSi substrates using chemical spray pyrolysis technique to fabricate high-efficiency SnO2/PSi solar cells. The porous silicon was prepared using electrochemical etching technique. The structural, optical, and electrical properties of SnO2 and SnO2:Pd films were investigated. X-ray diffraction (XRD) spectra of the films show the presence of a single sharp peak along (110) plane which belongs to crystalline tin oxide film with tetragonal phase. The optical energy gap of the film decreases as the palladium doping concentration increases. Photoluminescence (PL) studies of undoped and doped SnO2 films confirm the presence of the blue shift after the film doping. Raman studies show the existence of Eu, Eg, M2, and E2u active infrared vibration modes. Dark and illuminated current-voltage characteristics and capacitance-voltage characteristics of the heterojunction of SnO2/PSi/c-Si and SnO2:Pd/PSi/c-Si heterojunctions were investigated. The responsivity SnO2/PSi heterojunction solar cells results revealed that the heterojunction has two peaks of response positioned at 400 nm and 600 nm and the maximum responsivity was 0.56 A/W at 600 nm for SnO2:Pd/PSi/c-Si heterojunction solar cell doped with 5 wt% of Pd dopant. The conversion efficiency η of greater than 14% was obtained for SnO2:Pd/PSi solar cell doped with 5 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abdul Majeed AM, Hussein I, Al-Jalil RA (2020) Fabrication of high responsivity for MgO NPs/PSi heterojunction device by Sol-Gel technique. Silicon 12(5):1007–1010

    Article  CAS  Google Scholar 

  2. Arenas M, Hu H, Antonio J (2008) Photovoltage and J-V features of porous silicon. Rev Mex Fis 54:391–396

    CAS  Google Scholar 

  3. Lidia M (2005) Quantum confinement in nanocrystalline silicon. J Optoelectron Adv Mater 7:2341–2346

    Google Scholar 

  4. Ismail RA (2010) Fabrication and characterization of photodetector based on porous silicon. e-J Surf Sci Nanotechnol 8:388–391

    Article  CAS  Google Scholar 

  5. Bulakh B, Korsunska N, Khomenkova L (2019) Structural and luminescent characteristics of macro porous silicon. J Mater Sci Mater Electron 20:S226–S229

    Article  Google Scholar 

  6. Sahoo M, Kale P (2019) Restructured porous silicon for solar photovoltaic: a review. Microporous Mesoporous Mater 289:109619–109637

    Article  CAS  Google Scholar 

  7. Ismail RA, Al-Naimi A, Al-Ani A (2008) Studies on fabrication and characterization of a high-performance Al-doped ZnO/n-Si (1 1 1) heterojunction photodetector. Semicond Sci Technol 23(7):075030–075035

    Article  Google Scholar 

  8. Wolf D, Descoeudres A, Holman Z, Ballif C (2012) High-efficiency silicon heterojunction solar cells. Green 2:7–24

    Google Scholar 

  9. Masuko K et al (2014) Achievement of more than 25% conversion heterojunction solar cell. IEEE J Photovoltaic 6:1433–1435

    Article  Google Scholar 

  10. Xie R, Ishijima N, Sugime H, Noda S (2019) Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process. Sci Rep 9(1):12051

    Article  Google Scholar 

  11. Ismail RA, Al-Jawad SM, Hussein N (2014) Preparation of n-ZnO/p-Si solar cells by oxidation of zinc nanoparticles: effect of oxidation temperature on the photovoltaic properties. Appl Phys A 117(4):1977–1984

    Article  CAS  Google Scholar 

  12. Yakuphanoglu F, Yasemin Y, Caglar M, Ilican S (2010) ZnO/pSi heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate. Mater Sci Semicond Process 13(3):137–140

    Article  CAS  Google Scholar 

  13. Shen S, Zhang J, Zhou S, Han Y, Gao P, Sun B, Zhao N, Wong CP (2019) Nanostructured silicon-based heterojunction solar cells with double hole-transporting layers. Adv Electron Mater 5(2):1800070–1800075

    Article  Google Scholar 

  14. Duan X, Zhang X, Zhang Y (2018) High performance organic-nanostructured silicon hybrid solar cell with modified surface structure. Nanoscale Res Lett 13(1):283

    Article  Google Scholar 

  15. Salim ET, Fakhri M, Ismail RA et al (2019) Effect of light induced heat treatment on the structural and morphological properties of LiNbO3 thin films. Superlattice Microst 128:67–75

    Article  CAS  Google Scholar 

  16. Benhaliliba M, Benouis CE, Yakuphanoglu F, Tiburcio-Silver A, Aydin C, Hamzaoui S, Mouffak Z (2012) Detailed investigation of submicrometer-sized grains of chemically sprayed (Sn1−xAlx O2) (0 ≤x≤ 0.085) thin films. J Alloys Compd 527:40–47

    Article  CAS  Google Scholar 

  17. Bhatnagar M, Kaushik V, Kaushal A, Singh M, Mehta BR (2016) Structural and photoluminescence properties of tin oxide and tin oxide: core–shell and alloy nanoparticles synthesised using gas phase technique. AIP Adv 6(9):095321–095331

    Article  Google Scholar 

  18. Jubu PR, Yam FK, Igba VM, Beh KP (2020) Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – a case study of β-Ga2O3. J Solid State Chem 290:121576–121578

    Article  CAS  Google Scholar 

  19. Franco FD, Zaffora A, Santamaria M (2018) Band gap narrowing and dielectric constant enhancement of (NbxTa(1- x))2O5 by electrochemical nitrogen doping. Electrochim Acta 265:326e335

    Article  Google Scholar 

  20. Tran Q, Fang J, Chin T (2015) Properties of fluorine-doped SnO2 thin films by agreen sol–gel method. Mater Sci Semicond Process 40:664–669

    Article  CAS  Google Scholar 

  21. Xu B, Ren XG, Gu GR, Lan LL, Wu BJ (2016) Structural and optical properties of Zn-doped SnO2 films prepared by DC and RF magnetron co-sputtering. Superlattice Microst 89:34–42

    Article  CAS  Google Scholar 

  22. Shewale P, Sim K, Kim Y, Kim J, Moholkar A, Uplane M (2013) Structural and photoluminescence characterization of SnO2: F thin films deposited by advanced spray pyrolysis technique at low substrate temperature. J Lumin 139:113–118

    Article  CAS  Google Scholar 

  23. Mazloom J, Ghodsi F, Gholami M (2013) Fiber-like stripe ATO (SnO2:Sb) nanostructured thin films grown by sol–gel method: optical, topographical and electrical properties. J Alloys Compd 579:384–393

    Article  CAS  Google Scholar 

  24. Lin L, Guo S, Sun X, Feng J, Wang Y (2010) Synthesis and photoluminescence properties of porous silicon nanowire arrays. Nanoscale Res Lett 5(11):1822–1828

    Article  CAS  Google Scholar 

  25. Ismail RA, Alwan AM, Ahmed AS (2017) Preparation and characteristics study of nano-porous silicon UV photodetector. Appl Nanosci 7(1-2):9–15

    Article  CAS  Google Scholar 

  26. Salim ET, Ismail RA, Halbos HT (2019) Growth of Nb2O5 film using hydrothermal method: effect of Nb concentration on physical properties. Mater Res Expr 6(11):116429

    Article  CAS  Google Scholar 

  27. Ismail RA, Mousa AM, Khashan KS, Mohsin MH, Hamid MK (2016) Synthesis of PbI2 nanoparticles by laser ablation in methanol. J Mater Sci Mater Electron 27:10696–10700

    Article  CAS  Google Scholar 

  28. Martínez A et al (2019) Structural and optical properties of GaN thin films grown on Si (111) by Pulsed Laser Deposition. Mater Res 22:1–6

    Google Scholar 

  29. Wan W, Li Y, Ren X, Zhao Y, Gao F, Zhao H (2018) 2D SnO2 Nanosheets: synthesis, characterization, structures, and excellent sensing performance to ethylene glycol. Nanomaterials 8(2):112–130

    Article  Google Scholar 

  30. Patil P et al (2003) Effect of substrate temperature on structural, electrical and optical properties of sprayed tin oxide (SnO2) thin film. Ceram Int 29(7):725–734

    Article  CAS  Google Scholar 

  31. Ruiwu L et al (2019) Influence of charge carriers concentration and mobility on the gas sensing behavior of tin dioxide thin films. Coatings 9:591–602

    Article  Google Scholar 

  32. Bissig B, Jäger T, Ding L, Tiwari A, Romanyuk Y (2015) Limits of carrier mobility in Sb-doped SnO2 conducting films deposited by reactive sputtering. APL Mater 3(6):062802

    Article  Google Scholar 

  33. Ismail RA, Hassan KZ, Abdulrazaq OA, Abode WH (2007) Optoelectronic properties of CdTe/Si heterojunction prepared by pulsed Nd:YAG-laser deposition technique. Mater Sci Semiconductor Process 10:19–23

    Article  CAS  Google Scholar 

  34. Sing P, Lal M, Singh S (2007) A new method of determination of series and shunt resistances of silicon solar cells. Sol Energy Mater Sol Cells 91:137–142

    Article  Google Scholar 

  35. Ismail RA, Raouf DN, Raouf DF (2006) High efficiency In2O3/c-Si heterojunction solar cells produced by rapid thermal oxidation. J Optoelectron Adv Mater 8:1443–1446

    CAS  Google Scholar 

  36. Ismail RA, Sheell MH, Ghafori S (2011) Isotype SnO2–Si heterojunction made by rapid photothermal oxidation of Sn. Int J Modern Phys B 25(25):3381–3389

    Article  CAS  Google Scholar 

  37. Singh K, Tamakloe R (1996) Power output of Al/SnO2/n-Si solar cell. Sol Energy 56(4):343–348

    Article  CAS  Google Scholar 

  38. Zheng Y, Jiang B, Gao Z, Lin G, Sang N, Chen L, Li M (2019) Optimization of SnO2-based electron-selective contacts for Si/PEDOT:PSS heterojunction solar cells. Sol Energy 193:502–506

    Article  CAS  Google Scholar 

  39. Zhou L, Xiao L, Yang H, Liu L, Yu I (2018) Greatly enhanced photovoltaic performance of crystalline silicon solar cells via metal oxide. Nanomaterials 8(7):505–514

    Article  Google Scholar 

  40. Latu-Romain L, Parsa Y, Mathieu S, Vilasi M, Wouters Y (2018) Chromia scale thermally grown on pure chromium under controlled p(O2) atmosphere: II—spallation investigation using photoelectrochemical techniques at a microscale. Oxid Met 90(3-4):267–277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raid A. Ismail.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, R.A., Abdul Majeed, A.M. Preparation and investigation of nanostructured SnO2:Pd/ porous silicon/c-Si heterostructure solar cell. J Solid State Electrochem 25, 1039–1048 (2021). https://doi.org/10.1007/s10008-020-04889-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04889-4

Keyword

Navigation