Skip to main content
Log in

An electrochemical aptasensor based on bifunctional Fe3O4@Au nanocomposites for adenosine triphosphate assay

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We describe a label-free electrochemical aptasensor for adenosine triphosphate (ATP) assay based on bifunctional Fe3O4@Au nanocomposites. Due to the introduction of Au nanoparticles, the resulting bifunctional Fe3O4@Au nanocomposites can be easily modified with ATP-specific aptamer molecules through Au–S interaction to build the nanoprobe and used to immobilize on a glassy carbon electrode simply with the assistance of a magnet. Once exposed to the target ATP, the current signal obtained at nanoprobe-containing magnetic glassy carbon electrode decreases immediately. The decrease in sensor current is a result of the less methylene blue adsorbed on the aptamer caused by the fact that the ATP-specific aptamer prefers to bind with ATP rather than with methylene blue. The decrease in sensor current can be used for electrochemical determination of ATP, for example, to determine ATP in human serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wongkaew N, Simsek M, Griesche C, Baeumner AJ (2019) Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem Rev 119(1):120–194

    Article  CAS  Google Scholar 

  2. Freitas M, Couto MS, Barroso MF, Pereira C, de-los-Santos-Alvarez N, Miranda-Ordieres AJ, Lobo-Castanon MJ, Delerue-Matos C (2016) Highly monodisperse Fe3O4@Au superparamagnetic nanoparticles as reproducible platform for genosensing genetically modified organisms. ACS Sens 1(8):1044–1053

    Article  CAS  Google Scholar 

  3. Amin MO, D’Cruz B, Madkour M, Al-Hetlani E (2019) Magnetic nanocomposite-based SELDI probe for extraction and detection of drugs, amino acids and fatty acids. Microchim Acta 186(8):503

    Article  CAS  Google Scholar 

  4. Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116(18):10473–10512

    Article  CAS  Google Scholar 

  5. Chowdhury AD, Agnihotri N, Doong R, De A (2017) Label-free and nondestructive separation technique for isolation of targeted DNA from DNA−protein mixture using magnetic Au−Fe3O4 nanoprobes. Anal Chem 89(22):12244–12251

    Article  Google Scholar 

  6. Jamshaid T, Neto ETT, Eissa MM, Zine N, Kunita MH, El-Salhi AE, Elaissari A (2016) Magnetic particles: from preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. Trends Anal Chem 79:344–362

    Article  CAS  Google Scholar 

  7. Zhou H, Zou F, Koh K, Lee JJ (2014) Multifunctional magnetoplasmonic nanomaterials and their biomedical applications. Biomed Nanotechnol 10(10):2921–2949

    Article  CAS  Google Scholar 

  8. Luo L, Li X, Crooks RM (2014) Low-voltage origami-paper-based electrophoretic device for rapid protein separation. Anal Chem 86(24):12390–12397

    Article  CAS  Google Scholar 

  9. Miao P, Tang Y, Wang L (2017) DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl Mater Interfaces 9(4):3940–3947

    Article  CAS  Google Scholar 

  10. Zhu C, Zhu W, Xu L, Zhou X (2019) A label-free electrochemical aptasensor based on magnetic biocomposites with Pb2+-dependent DNAzyme for the detection of thrombin. Anal Chim Acta 1047:21–27

    Article  CAS  Google Scholar 

  11. Wang H, Tang H, Yang C, Li Y (2019) Selective single molecule nanopore sensing of microRNA using PNA functionalized magnetic core–shell Fe3O4–Au nanoparticles. Anal Chem 91(12):7965–7970

    Article  CAS  Google Scholar 

  12. Gu W, Deng X, Gu X, Jia X, Lou B, Zhang X, Li J, Wang E (2015) Stabilized, superparamagnetic functionalized graphene/Fe3O4@Au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application. Anal Chem 87(3):1876–1881

    Article  CAS  Google Scholar 

  13. Schoukroun-Barnes LR, Macazo FC, Gutierrez B, Lottermoser J, Liu J, White RJ (2016) Reagentless, structure-switching, electrochemical aptamer-based sensors. Annu Rev Anal Chem 9(1):163–181

    Article  CAS  Google Scholar 

  14. Cunningham JC, Brenes NJ, Crooks RM (2014) Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal Chem 86(12):6166–6170

    Article  CAS  Google Scholar 

  15. Wang D, Xiao X, Xu S, Liu Y, Li Y (2018) Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay. Biosens Bioelectron 99:431–437

    Article  CAS  Google Scholar 

  16. Kashefifi-Kheyrabadi L, Mehrgardi MA, Wiechec E, Turner APF, Tiwari A (2014) Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal Chem 86(10):4956–4960

    Article  Google Scholar 

  17. Zhang YJ, Clausmeyer J, Babakinejad B, Cordoba AL, Ali T, Shevchuk A, Akahashi Y, Novak P, Edwards C, Lab M, Gopal S, Chiappini C, Anand U, Magnani L, Coombes RC, Gorelik J, Matsue T, Schuhmann W, Klenerman D, Sviderskaya EV, Korchev Y (2016) Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano 10(3):3214–3221

    Article  CAS  Google Scholar 

  18. Li X, Peng Y, Chai YQ, Yuan R, Xiang Y (2016) A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chem Commun 52(18):3673–3676

    Article  CAS  Google Scholar 

  19. Li MJ, Zheng YN, Liang WB, Yuan R, Chai YQ (2017) Using p-type PbS quantum dots to quench photocurrent of fullerene−Au NP@MoS2 composite structure for ultrasensitive photoelectrochemical detection of ATP. ACS Appl Mater Interfaces 9(48):42111–42120

    Article  CAS  Google Scholar 

  20. Ding XJ, Wang YH, Cheng W, Mo F, Sang Y, Xu LL, Ding SJ (2017) Aptamer based electrochemical adenosine triphosphate assay based on a target-induced dendritic DNA nanoassembly. Microchim Acta 184(2):431–438

    Article  CAS  Google Scholar 

  21. Santos-Cancel M, Simpson LW, Leach JB, White RJ (2019) Real-time detection of adenosine triphosphate release from astrocytes in three-dimensional culture using an integrated electrochemical aptamer-based sensor. ACS Chem Neurosci 10(4):2070–2079

    Article  CAS  Google Scholar 

  22. Li S, Zhao X, Yu X, Wan Y, Yin M, Zhang W, Cao B (2019) Fe3O4 nanozymes with aptamer-tuned catalysis for selective colorimetric analysis of ATP in blood. Anal Chem 91(22):14737–14742

    Article  CAS  Google Scholar 

  23. Rohs R, Sklenar H, Lavery R, Roder B (2000) Methylene blue binding to DNA with alternating GC base sequence: a modeling study. J Am Chem Soc 122(12):2860–2866

    Article  CAS  Google Scholar 

  24. Mezni A, Balti I, Mlayah A, Jouini N, Smiri LS (2013) Hybrid Au–Fe3O4 nanoparticles: plasmonic, surface enhanced Raman scattering, and phase transition properties. J Phys Chem C 117(31):16166–16174

    Article  CAS  Google Scholar 

  25. Peng Y, Li D, Yuan R, Xiang Y (2018) A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons. Biosens Bioelectron 105:1–5

    Article  CAS  Google Scholar 

  26. Ma Y, Geng F, Wang Y, Xu M, Shao C, Qu P, Zhang Y, Ye B (2019) Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition. Biosens Bioelectron 134:36–41

    Article  CAS  Google Scholar 

  27. Feng L, Sivanesan A, Lyu Z, Offenhäusser A, Mayer D (2015) Electrochemical current rectification–a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor. Biosens Bioelectron 66:62–68

    Article  CAS  Google Scholar 

  28. Lu L, Si JC, Gao ZF, Zhang Y, Lei JL, Luo HQ, Li NB (2015) Highly selective and sensitive electrochemical biosensor for ATP based on the dual strategy integrating the cofactor-dependent enzymatic ligation reaction with self-cleaving DNAzyme-amplified electrochemical detection. Biosens Bioelectron 63:14–20

    Article  CAS  Google Scholar 

  29. Zhou Q, Lin Y, Lin Y, Wei Q, Chen G, Tang D (2016) In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Talanta:23–28

  30. Li X, Yang J, Xie J, Jiang B, Yuan R, Xiang Y (2018) Cascaded signal amplification via target-triggered formation of aptazyme for sensitive electrochemical detection of ATP. Biosens Bioelectron 102:296–300

    Article  CAS  Google Scholar 

  31. Coolen EJ, Arts IC, Swennen EL, Bast A, Stuart MA, Dagnelie PCJ (2008) Simultaneous determination of adenosine triphosphate and its metabolites in human whole blood by RP-HPLC and UV-detection. Chromatogr B: Anal Technol Biomed Life Sci 864(1-2):43–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningning Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Lv, M., Pan, Q. et al. An electrochemical aptasensor based on bifunctional Fe3O4@Au nanocomposites for adenosine triphosphate assay. J Solid State Electrochem 25, 1073–1081 (2021). https://doi.org/10.1007/s10008-020-04887-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04887-6

Keywords

Navigation