Skip to main content
Log in

Enhanced lithium electrochromic performance of tungsten oxide films by rapid co-synthesis of iron and tantalum oxides using cold atmospheric pressure plasma polymerization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium electrochromic performance of organo-tungsten oxynitride (WOz1Cz2Nz3) films enhanced by additions of organo-iron oxynitride (FeOz1Cz2Nz3) or organo-tantalum oxynitride (TaOz1Cz2Nz3) with an atmospheric pressure plasma jet (APPJ) by a rapid deposition onto 60 Ω/square flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrate at a short exposed duration of 54 s has been investigated. Flexible organo-tungsten-iron-tantalum oxynitride (WFexTayOz1Cz2Nz3) film possesses the significant Li+ ionic electrochromic performance, even though after being bent 360° around a 2.5-cm diameter rod for 1000 times and tested for 200 cycles of reversible Li+ ion intercalation and de-intercalation in a 1 M LiClO4-propylene carbonate electrolyte respectively by the potential sweep switching from the potential 2 V to − 1 V at a scan rate of − 40 mV/s and from the potential − 1 V to 2 V at a scan rate of 40 mV/s and by the potential step altering at the potential − 1 V for 20 s and the potential 2 V for 30 s, respectively. Li+ ionic intercalated charge of up to 13.2 mC/cm2 and optical modulation of up to 64.8% at a wavelength of 850 nm are proven for WFexTayOz1Cz2Nz3 film, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cannavale A, Ayr U, Martellota F (2018) Innovative electrochromic devices: energy savings and visual comfort effects. Energ Prededia 148:900–907

    Google Scholar 

  2. Cannavale A, Martellotta F, Cossari P, Gigli G, Ayr U (2018) Energy savings due to building integration of innovative solid-state electrochromic devices. Appl Energy 225:975–985

    Article  Google Scholar 

  3. Randin JP (1978) Fundamental absorption edge of evaporated amorphous WO3 films. J Electron Mater 7(1):47–63

    Article  CAS  Google Scholar 

  4. Avellaneda CO, Bueno PR, Bulhões LOS (2001) Synthesis and electrochromic behavior of lithium-doped WO3 films. J Non-Crytal Solids 290(2-3):115–121

    Article  CAS  Google Scholar 

  5. Aliev AE, Shin HW (2002) Nanostructured materials for electrochromic devices. Solid State Ionics 154-155:425–431

    Article  CAS  Google Scholar 

  6. Naseri N, Azimirad R, Akhavan O, Moshfegh AZ (2010) Improved electrochromical properties of sol-gel WO3 thin films by doping gold nanocrystals. Thin Solid Films 518(8):2250–2257

    Article  CAS  Google Scholar 

  7. Boudurov G, Ivanova T, Aleksandrova M, Gesheva KA (2012) Optical characterization of WO3-VOx thin films for application in electrochromic devices-“smart windows”. J Phys Conf Ser 356:012016

    Article  Google Scholar 

  8. Gesheva KA, Cziraki A, Ivanova T, Szekeres A (2007) Crystallization of chemically vapor deposited molybdenum and mixed tungsten/molybdenum oxide films for electrochromic application. Thin Solid Films 515(11):4609–4613

    Article  CAS  Google Scholar 

  9. Kadam PM, Tarwal NL, Mali SS, Deshmukh HP, Patil PS (2011) Enhanced electrochromic performance of f-MWCNT-WO3 composite. Electrochim Acta 58:556–561

    Article  CAS  Google Scholar 

  10. Lin Y-S, Tsai T-H, Chen P-C, Liao M-C, Lai Y-C (2018) Flexible electrochromic tungsten/titanium mixed oxide films synthesized onto flexible polyethylene terephthalate/indium tin oxide substrates via low temperature plasma polymerization. Thin Solid Films 651:R56–R66

    Article  Google Scholar 

  11. Azimirad R, Akhavan O, Moshfegh AZ (2006) An investigation on electrochromic properties of (WO3)1-x-(Fe2O3)x thin films. Thin Solid Films 515(2):644–647

    Article  CAS  Google Scholar 

  12. Koo B-R, Kim K-H, Ahn H-J (2018) Switching electrochromic performance improvement enabled by highly developed mesopores and oxygen vacancy defects of Fe-doped WO3 films. Appl Surf Sci 453:238–244

    Article  CAS  Google Scholar 

  13. Lin Y-S, Chen Y-C, Shie P-S (2014) Enhanced lithium electrochromic performance of flexible tungsten oxide films by tantalum addition with an atmospheric pressure plasma jet. Sol Energy Mater Sol Cells 122:59–69

    Article  CAS  Google Scholar 

  14. Seman MT, Robbins JJ, Leonhardt D, Agarwal S, Wolden CA (2008) Comparison of electrolyte performance for Ta2O5 thin films produced by pulsed and continuous wave PECVD. J Electrochem Soc 155(6):J168–J174

    Article  CAS  Google Scholar 

  15. Bencic S, Orel B, Urca A, Tangar UL (2000) Structural and electrochromic properties of nanosized Fe/V-oxide films with FeVO4 and Fe2V4O13 grains: comparative studies with crystalline V2O5. Sol Energy 68(6):499–515

    Article  CAS  Google Scholar 

  16. Gerard P, Deneuville A, Hollinger G, Duc TM (1977) Color in "tungsten trioxide" thin films. J Appl Phys 48(10):4252–4255

    Article  CAS  Google Scholar 

  17. Dobal PS, Katiyar RS, Jiang Y, Guo R, Bhalla AS (2000) Raman scattering study of a phase transition in tantalum pentoxide. J Raman Spectrosc 31(12):1061–1065

    Article  Google Scholar 

  18. Berggren L, Jonsson JC, Niklasson GA (2007) Optical absorption in lithiated tungsten oxide thin films: experiment and theory. J Appl Phys 102(8):083538

    Article  Google Scholar 

  19. Lin Y-S, Wu S-S, Tsai T-H (2011) High-rate deposition of electrochromic organotungsten oxide thin films for flexible electrochromic devices by atmospheric pressure plasma jet: the effect of substrate distance. Plasma Process Polym 8(8):728–739

    Article  CAS  Google Scholar 

  20. Ivanova T, Gesheva KA, Kalitzova M, Marsen B, Cole B, Miller EL (2007) Technologies for deposition of transition metal oxide thin films: application as functional layers in "smart windows" and photocatalytic systems. Mater Sci Eng B 142(2-3):126–134

    Article  CAS  Google Scholar 

  21. Guillen C, Herrero J (2005) Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates. Thin Solid Films 480-481:129–132

    Article  CAS  Google Scholar 

  22. Nadaud N, Nanot M, Jove J, Roisnel T (1997) Structural study of tin-doped indium oxide (ITO) ceramics using 119Sn Moessbauer spectroscopy and neutron diffraction. Key En Mater 132-136:1373–1376

    Article  CAS  Google Scholar 

  23. Niklasson GA, Granqvist CG (2007) Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 17(2):127–156

    Article  CAS  Google Scholar 

  24. Lin Y-S, Chen P-C, Liao M-M, Lai Y-H (2019) Flexible electrochromic tungsten/iron mixed oxide films synthesized by an atmospheric pressure plasma jet. Thin Solid Films 669:235–246

    Article  CAS  Google Scholar 

  25. Lee SH, Cheong HM, Tracy CE, Mascarenhas A, Czanderna AW, Deb SK (1999) Electrochromic coloration efficiency of a-WO3-y thin films as a function of oxygen. Deficiency. Appl Phys Lett 75(11):1541–1543

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Technology of the Republic of China (MOST105-2221-E-035-089 and MOST106-2221-E-035-080-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Sen Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Liao, MC. & Hu, JY. Enhanced lithium electrochromic performance of tungsten oxide films by rapid co-synthesis of iron and tantalum oxides using cold atmospheric pressure plasma polymerization. J Solid State Electrochem 25, 1049–1063 (2021). https://doi.org/10.1007/s10008-020-04883-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04883-w

Keywords

Navigation