Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G (2016) Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 45(3):715–752
CAS
Article
Google Scholar
Cesarino I, Cesarino V, Moraes FC, Ferreira TCR, Lanza MRV, Mascaro LH, Machado SAS (2013) Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes. Mater Chem Phys 141(1):304–309. https://doi.org/10.1016/j.matchemphys.2013.05.015
CAS
Article
Google Scholar
Cesarino I, Cesarino V, Lanza MRV (2013) Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: simultaneous determination of sulfamethoxazole and trimethoprim. Sensors Actuators B Chem 188:1293–1299. https://doi.org/10.1016/j.snb.2013.08.047
CAS
Article
Google Scholar
Wu HX, Cao WM, Li Y, Liu G, Wen Y, Yang HF, Yang SP (2010) In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim Acta 55(11):3734–3740. https://doi.org/10.1016/j.electacta.2010.02.017
CAS
Article
Google Scholar
Cesarino I, Galesco HV, Moraes FC, Lanza MRV, Machado SAS (2013) Biosensor based on electrocodeposition of carbon nanotubes/polypyrrole/laccase for neurotransmitter detection. Electroanalysis 25(2):394–400. https://doi.org/10.1002/elan.201200542
CAS
Article
Google Scholar
Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Voltammetric determination of uric acid at a fullerene-C 60-modified glassy carbon electrode. Electroanalysis 17(24):2217–2223. https://doi.org/10.1002/elan.200503353
CAS
Article
Google Scholar
Da Silva MKL, Plana Simões R, Cesarino I (2018) Evaluation of reduced graphene oxide modified with antimony and copper nanoparticles for levofloxacin oxidation. Electroanalysis 30(9):2066–2076. https://doi.org/10.1002/elan.201800265
CAS
Article
Google Scholar
Cesarino I, Simões RP, Lavarda FC, Batagin-Neto A (2016) Electrochemical oxidation of sulfamethazine on a glassy carbon electrode modified with graphene and gold nanoparticles. Electrochim Acta 192:8–14. https://doi.org/10.1016/j.electacta.2016.01.178
CAS
Article
Google Scholar
Raymundo-Pereira PA, Campos AM, Vicentini FC, Janegitz BC, Mendonça CD, Furini LN, Boas NV, Calegaro ML, Constantino CJL, Machado SAS, Oliveira ON Jr (2017) Sensitive detection of estriol hormone in creek water using a sensor platform based on carbon black and silver nanoparticles. Talanta 174:652–659. https://doi.org/10.1016/j.talanta.2017.06.058
CAS
Article
PubMed
Google Scholar
Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sust Energ Rev 42:1055–1064
CAS
Article
Google Scholar
Quosai P, Anstey A, Mohanty AK, Misra M (2018) Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and coffee chaff: for polymer composite applications. R Soc Open Sci 5(8):171970. https://doi.org/10.1098/rsos.171970
CAS
Article
PubMed
PubMed Central
Google Scholar
Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457. https://doi.org/10.1016/j.chemosphere.2013.03.055
CAS
Article
PubMed
Google Scholar
Oleszczuk P, Hale SE, Lehmann J, Cornelissen G (2012) Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresour Technol 111:84–91. https://doi.org/10.1016/j.biortech.2012.02.030
CAS
Article
PubMed
Google Scholar
Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119. https://doi.org/10.1016/j.biortech.2014.01.058
CAS
Article
PubMed
Google Scholar
Ahn SY, Eom SY, Rhie YH, Sung YM, Moon CE, Choi GM, Kim DJ (2013) Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. Appl Energy 105:207–216. https://doi.org/10.1016/j.apenergy.2013.01.023
Article
Google Scholar
Gil MV, Martínez M, García S, Rubiera F, Pis JJ, Pevida C (2013) Response surface methodology as an efficient tool for optimizing carbon adsorbents for CO2 capture. Fuel Process Technol 106:55–61. https://doi.org/10.1016/j.fuproc.2012.06.018
CAS
Article
Google Scholar
Zhang C, Geng Z, Cai M, Zhang J, Liu X, Xin H, Ma J (2013) Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int J Hydrog Energy 38(22):9243–9250. https://doi.org/10.1016/j.ijhydene.2013.04.163
CAS
Article
Google Scholar
Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota - a review. Soil Biol Biochem 43(9):1812–1836
CAS
Article
Google Scholar
Mani S, Kastner JR, Juneja A (2013) Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Process Technol 114:118–125. https://doi.org/10.1016/j.fuproc.2013.03.015
CAS
Article
Google Scholar
Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T (2012) Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today 190(1):122–132. https://doi.org/10.1016/j.cattod.2012.02.006
CAS
Article
Google Scholar
Dong X, He L, Liu Y, Piao Y (2018) Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochim Acta 292:55–62. https://doi.org/10.1016/j.electacta.2018.09.129
CAS
Article
Google Scholar
Gevaerd A, De Oliveira PR, Mangrich AS et al (2016) Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat. Mater Sci Eng C 62:123–129. https://doi.org/10.1016/j.msec.2016.01.020
CAS
Article
Google Scholar
Kalinke C, Wosgrau V, Oliveira PR, Oliveira GA, Martins G, Mangrich AS, Bergamini MF, Marcolino-Junior LH (2019) Green method for glucose determination using microfluidic device with a non-enzymatic sensor based on nickel oxyhydroxide supported at activated biochar. Talanta 200:518–525. https://doi.org/10.1016/j.talanta.2019.03.079
CAS
Article
PubMed
Google Scholar
Oliveira PR, Kalinke C, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2018) Copper hexacyanoferrate nanoparticles supported on biochar for amperometric determination of isoniazid. Electrochim Acta 285:373–380. https://doi.org/10.1016/j.electacta.2018.08.004
CAS
Article
Google Scholar
Agustini D, Mangrich AS, Bergamini MF, Marcolino-Junior LH (2015) Sensitive voltammetric determination of lead released from ceramic dishes by using of bismuth nanostructures anchored on biochar. Talanta 142:221–227. https://doi.org/10.1016/j.talanta.2015.04.052
CAS
Article
PubMed
Google Scholar
Kalinke C, de Oliveira P, Mangrich A et al (2020) Chemically-activated biochar from ricinus communis l. cake and their potential applications for the voltammetric assessment of some relevant environmental pollutants. J Braz Chem Soc 31:941–952. https://doi.org/10.21577/0103-5053.20190259
CAS
Article
Google Scholar
Wang J, Yang J, Xu P, Liu H, Zhang L, Zhang S, Tian L (2020) Gold nanoparticles decorated biochar modified electrode for the high-performance simultaneous determination of hydroquinone and catechol. Sensors Actuators B Chem 306:127590. https://doi.org/10.1016/j.snb.2019.127590
CAS
Article
Google Scholar
Moraes FC, Cabral MF, Mascaro LH, MacHado SAS (2011) The electrochemical effect of acid functionalisation of carbon nanotubes to be used in sensors development. Surf Sci 605(3-4):435–440. https://doi.org/10.1016/j.susc.2010.11.014
CAS
Article
Google Scholar
Greenwood J, Phan TH, Fujita Y, Li Z, Ivasenko O, Vanderlinden W, van Gorp H, Frederickx W, Lu G, Tahara K, Tobe Y, Uji-i H, Mertens SFL, de Feyter S (2015) Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation. ACS Nano 9(5):5520–5535. https://doi.org/10.1021/acsnano.5b01580
CAS
Article
PubMed
Google Scholar
Li Z, Van Guyse JFR, Rosa VR et al (2019) One-step covalent immobilization of β-cyclodextrin on sp 2 carbon surfaces for selective trace amount probing of guests. Adv Funct Mater 29(36):1901488. https://doi.org/10.1002/adfm.201901488
CAS
Article
Google Scholar
Phan TH, Van Gorp H, Li Z et al (2019) Graphite and graphene fairy circles: a bottom-up approach for the formation of nanocorrals. ACS Nano 13(5):5559–5571. https://doi.org/10.1021/acsnano.9b00439
CAS
Article
PubMed
Google Scholar
Huynh TMT, Phan TH, Ivasenko O, Mertens SFL, de Feyter S (2017) Nanoconfined self-assembly on a grafted graphitic surface under electrochemical control. Nanoscale 9(1):362–368. https://doi.org/10.1039/c6nr07519c
CAS
Article
PubMed
Google Scholar
Li Y, Shao J, Wang X, Deng Y, Yang H, Chen H (2014) Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuel 28(8):5119–5127. https://doi.org/10.1021/ef500725c
CAS
Article
Google Scholar
de Oliveira PR, Kalinke C, Gogola JL, Mangrich AS, Junior LHM, Bergamini MF (2017) The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. J Electroanal Chem 799:602–608. https://doi.org/10.1016/j.jelechem.2017.06.020
CAS
Article
Google Scholar
Keiluweit M, Nico PS, Johnson M, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. https://doi.org/10.1021/es9031419
CAS
Article
PubMed
Google Scholar
Daud WMAW, Houshamnd AH (2010) Textural characteristics, surface chemistry and oxidation of activated carbon. J Nat Gas Chem 19(3):267–279
CAS
Article
Google Scholar
Yin CY, Aroua MK, Daud WMAW (2007) Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep Purif Technol 52(3):403–415
CAS
Article
Google Scholar
Stavropoulos GG, Samaras P, Sakellaropoulos GP (2008) Effect of activated carbons modification on porosity, surface structure and phenol adsorption. J Hazard Mater 151(2-3):414–421. https://doi.org/10.1016/j.jhazmat.2007.06.005
CAS
Article
PubMed
Google Scholar
Vaughn SF, Kenar JA, Tisserat B, Jackson MA, Joshee N, Vaidya BN, Peterson SC (2017) Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications. Ind Crop Prod 97:260–267. https://doi.org/10.1016/j.indcrop.2016.12.017
CAS
Article
Google Scholar
Boguta P, Sokołowska Z, Skic K, Tomczyk A (2019) Chemically engineered biochar – effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste. Fuel 256:256. https://doi.org/10.1016/j.fuel.2019.115893
CAS
Article
Google Scholar
Sahin O, Taskin MB, Kaya EC, Atakol O, Emir E, Inal A, Gunes A (2017) Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use Manag 33(3):447–456. https://doi.org/10.1111/sum.12360
Article
Google Scholar
Zhou Q, Jiang X, Li X, Jia CQ, Jiang W (2018) Preparation of high-yield N-doped biochar from nitrogen-containing phosphate and its effective adsorption for toluene. RSC Adv 8(53):30171–30179. https://doi.org/10.1039/c8ra05714a
CAS
Article
Google Scholar
Gholivand MB, Akbari A (2016) A novel voltammetric sensor for citalopram based on multiwall carbon nanotube/(poly(p-aminobenzene sulfonic acid)/β-cyclodextrin). Mater Sci Eng C 62:480–488. https://doi.org/10.1016/j.msec.2016.01.066
CAS
Article
Google Scholar
Nouws HPA, Delerue-Matos C, Barros AA, Maesen E, Moreira SCPA, Neves MMPS (2008) Static and hydrodynamic monitoring of citalopram based on its electro-oxidation behavior at a glassy-carbon surface. Anal Lett 41(12):2171–2185. https://doi.org/10.1080/00032710802238069
CAS
Article
Google Scholar
Kalinke C, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2016) Biochar prepared from castor oil cake at different temperatures: a voltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration. J Hazard Mater 318:526–532. https://doi.org/10.1016/j.jhazmat.2016.07.041
CAS
Article
PubMed
Google Scholar
Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85
CAS
Article
Google Scholar