Skip to main content

A functionalized renewable carbon-based surface for sensor development

Abstract

This paper describes the surface modification of glassy carbon (GC) electrodes with a bamboo-based renewable carbon (RC) before and after an acid functionalization procedure with a sulfonitric solution (1:3 HNO3/H2SO4). The morphology and structural characterization indicate an increase of functional groups in the functionalized renewable carbon (RCF) surface. The enhanced electroanalytical properties of RC and RCF were evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in two different setups, in the presence of the redox couple ([Fe(CN)6]3−/4−) and escitalopram (EST). The results revealed an enhancement for the electrochemical responses of both inorganic and organic compounds in the electrolyte. Therefore, the use of new carbon-based materials such as renewable carbon for development of electrochemical sensors brings a fresh approach to low-cost device development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G (2016) Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 45(3):715–752

    CAS  Article  Google Scholar 

  2. Cesarino I, Cesarino V, Moraes FC, Ferreira TCR, Lanza MRV, Mascaro LH, Machado SAS (2013) Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes. Mater Chem Phys 141(1):304–309. https://doi.org/10.1016/j.matchemphys.2013.05.015

    CAS  Article  Google Scholar 

  3. Cesarino I, Cesarino V, Lanza MRV (2013) Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: simultaneous determination of sulfamethoxazole and trimethoprim. Sensors Actuators B Chem 188:1293–1299. https://doi.org/10.1016/j.snb.2013.08.047

    CAS  Article  Google Scholar 

  4. Wu HX, Cao WM, Li Y, Liu G, Wen Y, Yang HF, Yang SP (2010) In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim Acta 55(11):3734–3740. https://doi.org/10.1016/j.electacta.2010.02.017

    CAS  Article  Google Scholar 

  5. Cesarino I, Galesco HV, Moraes FC, Lanza MRV, Machado SAS (2013) Biosensor based on electrocodeposition of carbon nanotubes/polypyrrole/laccase for neurotransmitter detection. Electroanalysis 25(2):394–400. https://doi.org/10.1002/elan.201200542

    CAS  Article  Google Scholar 

  6. Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Voltammetric determination of uric acid at a fullerene-C 60-modified glassy carbon electrode. Electroanalysis 17(24):2217–2223. https://doi.org/10.1002/elan.200503353

    CAS  Article  Google Scholar 

  7. Da Silva MKL, Plana Simões R, Cesarino I (2018) Evaluation of reduced graphene oxide modified with antimony and copper nanoparticles for levofloxacin oxidation. Electroanalysis 30(9):2066–2076. https://doi.org/10.1002/elan.201800265

    CAS  Article  Google Scholar 

  8. Cesarino I, Simões RP, Lavarda FC, Batagin-Neto A (2016) Electrochemical oxidation of sulfamethazine on a glassy carbon electrode modified with graphene and gold nanoparticles. Electrochim Acta 192:8–14. https://doi.org/10.1016/j.electacta.2016.01.178

    CAS  Article  Google Scholar 

  9. Raymundo-Pereira PA, Campos AM, Vicentini FC, Janegitz BC, Mendonça CD, Furini LN, Boas NV, Calegaro ML, Constantino CJL, Machado SAS, Oliveira ON Jr (2017) Sensitive detection of estriol hormone in creek water using a sensor platform based on carbon black and silver nanoparticles. Talanta 174:652–659. https://doi.org/10.1016/j.talanta.2017.06.058

    CAS  Article  PubMed  Google Scholar 

  10. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sust Energ Rev 42:1055–1064

    CAS  Article  Google Scholar 

  11. Quosai P, Anstey A, Mohanty AK, Misra M (2018) Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and coffee chaff: for polymer composite applications. R Soc Open Sci 5(8):171970. https://doi.org/10.1098/rsos.171970

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457. https://doi.org/10.1016/j.chemosphere.2013.03.055

    CAS  Article  PubMed  Google Scholar 

  13. Oleszczuk P, Hale SE, Lehmann J, Cornelissen G (2012) Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresour Technol 111:84–91. https://doi.org/10.1016/j.biortech.2012.02.030

    CAS  Article  PubMed  Google Scholar 

  14. Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119. https://doi.org/10.1016/j.biortech.2014.01.058

    CAS  Article  PubMed  Google Scholar 

  15. Ahn SY, Eom SY, Rhie YH, Sung YM, Moon CE, Choi GM, Kim DJ (2013) Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. Appl Energy 105:207–216. https://doi.org/10.1016/j.apenergy.2013.01.023

    Article  Google Scholar 

  16. Gil MV, Martínez M, García S, Rubiera F, Pis JJ, Pevida C (2013) Response surface methodology as an efficient tool for optimizing carbon adsorbents for CO2 capture. Fuel Process Technol 106:55–61. https://doi.org/10.1016/j.fuproc.2012.06.018

    CAS  Article  Google Scholar 

  17. Zhang C, Geng Z, Cai M, Zhang J, Liu X, Xin H, Ma J (2013) Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int J Hydrog Energy 38(22):9243–9250. https://doi.org/10.1016/j.ijhydene.2013.04.163

    CAS  Article  Google Scholar 

  18. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota - a review. Soil Biol Biochem 43(9):1812–1836

    CAS  Article  Google Scholar 

  19. Mani S, Kastner JR, Juneja A (2013) Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Process Technol 114:118–125. https://doi.org/10.1016/j.fuproc.2013.03.015

    CAS  Article  Google Scholar 

  20. Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T (2012) Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today 190(1):122–132. https://doi.org/10.1016/j.cattod.2012.02.006

    CAS  Article  Google Scholar 

  21. Dong X, He L, Liu Y, Piao Y (2018) Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochim Acta 292:55–62. https://doi.org/10.1016/j.electacta.2018.09.129

    CAS  Article  Google Scholar 

  22. Gevaerd A, De Oliveira PR, Mangrich AS et al (2016) Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat. Mater Sci Eng C 62:123–129. https://doi.org/10.1016/j.msec.2016.01.020

    CAS  Article  Google Scholar 

  23. Kalinke C, Wosgrau V, Oliveira PR, Oliveira GA, Martins G, Mangrich AS, Bergamini MF, Marcolino-Junior LH (2019) Green method for glucose determination using microfluidic device with a non-enzymatic sensor based on nickel oxyhydroxide supported at activated biochar. Talanta 200:518–525. https://doi.org/10.1016/j.talanta.2019.03.079

    CAS  Article  PubMed  Google Scholar 

  24. Oliveira PR, Kalinke C, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2018) Copper hexacyanoferrate nanoparticles supported on biochar for amperometric determination of isoniazid. Electrochim Acta 285:373–380. https://doi.org/10.1016/j.electacta.2018.08.004

    CAS  Article  Google Scholar 

  25. Agustini D, Mangrich AS, Bergamini MF, Marcolino-Junior LH (2015) Sensitive voltammetric determination of lead released from ceramic dishes by using of bismuth nanostructures anchored on biochar. Talanta 142:221–227. https://doi.org/10.1016/j.talanta.2015.04.052

    CAS  Article  PubMed  Google Scholar 

  26. Kalinke C, de Oliveira P, Mangrich A et al (2020) Chemically-activated biochar from ricinus communis l. cake and their potential applications for the voltammetric assessment of some relevant environmental pollutants. J Braz Chem Soc 31:941–952. https://doi.org/10.21577/0103-5053.20190259

    CAS  Article  Google Scholar 

  27. Wang J, Yang J, Xu P, Liu H, Zhang L, Zhang S, Tian L (2020) Gold nanoparticles decorated biochar modified electrode for the high-performance simultaneous determination of hydroquinone and catechol. Sensors Actuators B Chem 306:127590. https://doi.org/10.1016/j.snb.2019.127590

    CAS  Article  Google Scholar 

  28. Moraes FC, Cabral MF, Mascaro LH, MacHado SAS (2011) The electrochemical effect of acid functionalisation of carbon nanotubes to be used in sensors development. Surf Sci 605(3-4):435–440. https://doi.org/10.1016/j.susc.2010.11.014

    CAS  Article  Google Scholar 

  29. Greenwood J, Phan TH, Fujita Y, Li Z, Ivasenko O, Vanderlinden W, van Gorp H, Frederickx W, Lu G, Tahara K, Tobe Y, Uji-i H, Mertens SFL, de Feyter S (2015) Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation. ACS Nano 9(5):5520–5535. https://doi.org/10.1021/acsnano.5b01580

    CAS  Article  PubMed  Google Scholar 

  30. Li Z, Van Guyse JFR, Rosa VR et al (2019) One-step covalent immobilization of β-cyclodextrin on sp 2 carbon surfaces for selective trace amount probing of guests. Adv Funct Mater 29(36):1901488. https://doi.org/10.1002/adfm.201901488

    CAS  Article  Google Scholar 

  31. Phan TH, Van Gorp H, Li Z et al (2019) Graphite and graphene fairy circles: a bottom-up approach for the formation of nanocorrals. ACS Nano 13(5):5559–5571. https://doi.org/10.1021/acsnano.9b00439

    CAS  Article  PubMed  Google Scholar 

  32. Huynh TMT, Phan TH, Ivasenko O, Mertens SFL, de Feyter S (2017) Nanoconfined self-assembly on a grafted graphitic surface under electrochemical control. Nanoscale 9(1):362–368. https://doi.org/10.1039/c6nr07519c

    CAS  Article  PubMed  Google Scholar 

  33. Li Y, Shao J, Wang X, Deng Y, Yang H, Chen H (2014) Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuel 28(8):5119–5127. https://doi.org/10.1021/ef500725c

    CAS  Article  Google Scholar 

  34. de Oliveira PR, Kalinke C, Gogola JL, Mangrich AS, Junior LHM, Bergamini MF (2017) The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. J Electroanal Chem 799:602–608. https://doi.org/10.1016/j.jelechem.2017.06.020

    CAS  Article  Google Scholar 

  35. Keiluweit M, Nico PS, Johnson M, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. https://doi.org/10.1021/es9031419

    CAS  Article  PubMed  Google Scholar 

  36. Daud WMAW, Houshamnd AH (2010) Textural characteristics, surface chemistry and oxidation of activated carbon. J Nat Gas Chem 19(3):267–279

    CAS  Article  Google Scholar 

  37. Yin CY, Aroua MK, Daud WMAW (2007) Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep Purif Technol 52(3):403–415

    CAS  Article  Google Scholar 

  38. Stavropoulos GG, Samaras P, Sakellaropoulos GP (2008) Effect of activated carbons modification on porosity, surface structure and phenol adsorption. J Hazard Mater 151(2-3):414–421. https://doi.org/10.1016/j.jhazmat.2007.06.005

    CAS  Article  PubMed  Google Scholar 

  39. Vaughn SF, Kenar JA, Tisserat B, Jackson MA, Joshee N, Vaidya BN, Peterson SC (2017) Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications. Ind Crop Prod 97:260–267. https://doi.org/10.1016/j.indcrop.2016.12.017

    CAS  Article  Google Scholar 

  40. Boguta P, Sokołowska Z, Skic K, Tomczyk A (2019) Chemically engineered biochar – effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste. Fuel 256:256. https://doi.org/10.1016/j.fuel.2019.115893

    CAS  Article  Google Scholar 

  41. Sahin O, Taskin MB, Kaya EC, Atakol O, Emir E, Inal A, Gunes A (2017) Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use Manag 33(3):447–456. https://doi.org/10.1111/sum.12360

    Article  Google Scholar 

  42. Zhou Q, Jiang X, Li X, Jia CQ, Jiang W (2018) Preparation of high-yield N-doped biochar from nitrogen-containing phosphate and its effective adsorption for toluene. RSC Adv 8(53):30171–30179. https://doi.org/10.1039/c8ra05714a

    CAS  Article  Google Scholar 

  43. Gholivand MB, Akbari A (2016) A novel voltammetric sensor for citalopram based on multiwall carbon nanotube/(poly(p-aminobenzene sulfonic acid)/β-cyclodextrin). Mater Sci Eng C 62:480–488. https://doi.org/10.1016/j.msec.2016.01.066

    CAS  Article  Google Scholar 

  44. Nouws HPA, Delerue-Matos C, Barros AA, Maesen E, Moreira SCPA, Neves MMPS (2008) Static and hydrodynamic monitoring of citalopram based on its electro-oxidation behavior at a glassy-carbon surface. Anal Lett 41(12):2171–2185. https://doi.org/10.1080/00032710802238069

    CAS  Article  Google Scholar 

  45. Kalinke C, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2016) Biochar prepared from castor oil cake at different temperatures: a voltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration. J Hazard Mater 318:526–532. https://doi.org/10.1016/j.jhazmat.2016.07.041

    CAS  Article  PubMed  Google Scholar 

  46. Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of Prof. Dr. Caio Velini and Prof. Dr. Caio Carbonari for FTIR analysis at NUPAM laboratory.

Funding

This research received funding from Fapesp process (2017/07288-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Cesarino.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, M.K.L., Leão, A.L., Sain, M. et al. A functionalized renewable carbon-based surface for sensor development. J Solid State Electrochem 25, 1093–1099 (2021). https://doi.org/10.1007/s10008-020-04882-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04882-x

Keywords

  • Renewable carbon;
  • Surface modification;
  • Acid treatment;
  • Electrochemical sensors;
  • Low-cost