Skip to main content
Log in

Cu-doped NaCu0.05Fe0.45Co0.5O2 as promising cathode material for Na-ion batteries: synthesis and characterization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, Cu-doped NaFe0.5Co0.5O2 was easily prepared by a one-step solid-state reaction and studied the effect of copper salt precursors including CuCl2 and Cu(OAc)2 on the structure and electrochemical properties. XRD patterns of the synthesized materials all exhibited diffraction peaks of O3-type layered oxide with high crystallinity and negligible impurity of halide compound. Using Cu(OAc)2 precursor showed a well-defined voltage profile feature of NaFe0.5Co0.5O2 material and a superior performance in sodium half-cell. Doped samples exhibited a capacity of 130 mAh g−1 which is higher than pristine NaFe0.5Co0.5O2 and good capacity retention for 100 cycles. Ex situ XRD results indicated the complex phase transition above 4 V on the first charge, but the structure of the Cu-doped materials remained O3-type layered after the end of cycling. Additionally, Cu-doping effectively enhanced Na+ diffusion coefficients also indicated using the cyclic voltammetry method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) Angew Chem Int Ed 57(1):102–120

    Article  CAS  Google Scholar 

  2. Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S (2018) Chem Rec 18(4):459–479

    Article  CAS  PubMed  Google Scholar 

  3. Massé RC, Uchaker E, Cao G (2015) Sci China Mater 58(9):715–766

    Article  CAS  Google Scholar 

  4. Nitta N, Wu F, Lee JT, Yushin G (2015) Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  5. Wang P-F, You Y, Yin Y-X, Guo Y-G (2018) Adv Energy Mater 8(8):1701912

    Article  CAS  Google Scholar 

  6. Ye H, Wang C-Y, Zuo T-T, Wang P-F, Yin Y-X, Zheng Z-J, Wang P, Cheng J, Cao F-F, Guo Y-G (2018) Nano Energy 48:369–376

    Article  CAS  Google Scholar 

  7. Tripathi A, Rudola A, Gajjela SR, Xi S, Balaya P (2019) J Mater Chem A 7(45):25944–25960

    Article  CAS  Google Scholar 

  8. Guo J-Z, Wang P-F, Wu X-L, Zhang X-H, Yan Q, Chen H, Zhang J-P, Guo Y-G (2017) Adv Mater 29(33):1701968

    Article  CAS  Google Scholar 

  9. Deng J, Luo W-B, Lu X, Yao Q, Wang Z, Liu H-K, Zhou H, Dou S-X (2018) Adv Energy Mater 8(5):1701610

    Article  CAS  Google Scholar 

  10. Liu J, Yang G, Zhang X, Wang J, Wang R (2012) J Power Sources 197:253–259

    Article  CAS  Google Scholar 

  11. Churikov AV, Kachibaya EI, Sycheva VO, Ivanishcheva IA, Imnadze RI, Paikidze TV, Ivanishchev AV (2009) Russ J Electrochem 45(2):175–182

    Article  CAS  Google Scholar 

  12. Kim H-S, Kim W-S, Gu H-B, Wang G (2017) J New Mater Electrochem Syst 12:207–212

    Google Scholar 

  13. Cao X, Zhao Y, Zhu L, Xie L, Cao X, Xiong S, Wang C (2016) Int J Electrochem Sci 5267–5278

  14. Li Z-Y, Zhang J, Gao R, Zhang H, Hu Z, Liu X (2016) ACS Appl Mater Interfaces 8(24):15439–15448

    Article  CAS  PubMed  Google Scholar 

  15. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Chem Rev 114(23):11636–11682

    Article  CAS  PubMed  Google Scholar 

  16. Zhou P, Liu X, Weng J, Wang L, Wu X, Miao Z, Zhao J, Zhou J, Zhou S (2019) J Mater Chem A 7(2):657–663

    Article  CAS  Google Scholar 

  17. Manikandan P, Heo S, Kim HW, Jeong HY, Lee E, Kim Y (2017) J Power Sources 363:442–449

    Article  CAS  Google Scholar 

  18. Yoshida H, Yabuuchi N, Komaba S (2013) Electrochem Commun 34:60–63

    Article  CAS  Google Scholar 

  19. Wang X, Tamaru M, Okubo M, Yamada A (2013) J Phys Chem C 117(30):15545–15551

    Article  CAS  Google Scholar 

  20. Wang H, Gu M, Jiang J, Lai C, Ai X (2016) J Power Sources 327:653–657

    Article  CAS  Google Scholar 

  21. Amaha K, Kobayashi W, Akama S, Mitsuishi K, Moritomo Y (2017) Phys Status Solidi RRL – Rapid Res Lett 11(1):1600284

    Article  CAS  Google Scholar 

  22. Van Hoang N, Dai Quang T, Van Man T, My Loan Phung L (2019) Vietnam J Chem 57:302–307

    Article  CAS  Google Scholar 

  23. Plewa A, Kulka A, Kondracki Ł, Lu L, Molenda J (2019) J Power Sources 419:42–51

    Article  CAS  Google Scholar 

  24. Yao H-R, Wang P-F, Wang Y, Yu X, Yin Y-X, Guo Y-G (2017) Adv Energy Mater 7(15):1700189

    Article  CAS  Google Scholar 

  25. Li L, Wang H, Han W, Guo H, Hoser A, Chai Y, Liu X (2018) J Electrochem Soc 165(16):A3854–A3861

    Article  CAS  Google Scholar 

  26. Xu S-Y, Wu X-Y, Li Y-M, Hu Y-S, Chen L-Q (2014) Chin Phys B 23(11):118202

    Article  CAS  Google Scholar 

  27. Pang W-L, Guo J-Z, Zhang X-H, Fan C-Y (2019) J Alloys Compd 790:1092–1100

    Article  CAS  Google Scholar 

  28. Wang L, Sun Y-G, Hu L-L, Piao J-Y, Guo J, Manthiram A, Ma J, Cao A-M (2017) J Mater Chem A 5(18):8752–8761

    Article  CAS  Google Scholar 

  29. Ding JJ, Zhou YN, Sun Q, Yu XQ, Yang XQ, Fu ZW (2013) Electrochim Acta 87:388–393

    Article  CAS  Google Scholar 

  30. Zhao J, Zhao L, Dimov N, Okada S, Nishida T (2013) J Electrochem Soc 160(5):A3077–A3081

    Article  CAS  Google Scholar 

  31. Hoang NV, Quang TD, Man TV, Phung LML (2019) Vietnam J Chem 4E12:302–307

    Google Scholar 

  32. Delmas C, Fouassier C, Hagenmuller P (1980) Physica 99B:81–85

    Google Scholar 

  33. Kubota K, Asari T, Yoshida H, Yaabuuchi N, Shiiba H, Nakayama M, Komaba S (2016) Adv Funct Mater 26(33):6047–6059

    Article  CAS  Google Scholar 

  34. Lei Y, Li X, Liu L, Ceder G (2014) Chem Mater 26(18):5288–5296

    Article  CAS  Google Scholar 

  35. Hoang NV, Phuoc MN, Nguyen HLT, Quan ND (2019) Vietnam J Sci Technol 57(2):198–206

    Article  Google Scholar 

  36. Ramasamy HV, Kaliyappan K, Tangavel R, Aravindan V, Kang K, Kim DU, Sun X, Lee Y-S (2017) J Mater Chem A

  37. Mason CW, Lange F, Saravanan K, Lin F, Nordlund D (2015) ECS Electrochem Lett 4(5):A41–A44

    Article  CAS  Google Scholar 

  38. Mu L, Xu S, Li Y, Hu Y-S, Li H, Chen L, Huang X (2015) Adv Mater 27(43):6928–6933

    Article  CAS  PubMed  Google Scholar 

  39. Wang P-F, You Y, Yin Y-X, Guo Y-G (2016) J Mater Chem A 4(45):17660–17664

    Article  CAS  Google Scholar 

  40. Zhu Q, Nan B, Shi Y, Zhu Y, Wu S, He L, Deng Y, Wang L, Chen Q, Lu Z (2017) J Solid State Electrochem 21(10):2985–2995

    Article  CAS  Google Scholar 

  41. Guo S, Sun Y, Yi J, Zhu K, Liu P, Zhu Y, Zhu G-Z, Chen M, Ishida M, Zhou H (2016) NPG Asia Mat 8(4):e266

    Article  CAS  Google Scholar 

  42. Clément RJ, Bruce PG, Grey CP (2015) J Electrochem Soc 162(14):A2589–A2604

    Article  CAS  Google Scholar 

  43. Yabuuchi N, Komaba S (2014) Sci Technol Adv Mater 15(4):043501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Di Lecce D, Campanella D, Hassoun J (2018) J Phys Chem C 122(42):23925–23933

    Article  CAS  Google Scholar 

  45. Rong X, Qi X, Lu Y, Wang Y, Li Y, Jiang L, Yang K, Gao F, Huang X, Chen L, Hu Y-S (2019) J Energy Chem 31:132–137

    Article  Google Scholar 

Download references

Funding

This work was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.06-2018.359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to My Loan Phung Le.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• High crystallize Cu-doped NaCu0.05Fe0.45Co0.5O2 samples were synthesized using halide and acetate as copper precursors.

• The acetate-based precursor (NFCCu-Ac) enables high purity and better performance with the capacity of 130 mAhg−1 and stable cycling over 100 cycles.

• Phase structure at high potential and Na+-ion diffusion coefficient of the NFCCu-Ac sample were explored.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.H., Le Nguyen, M., Tran, H.P. et al. Cu-doped NaCu0.05Fe0.45Co0.5O2 as promising cathode material for Na-ion batteries: synthesis and characterization. J Solid State Electrochem 25, 767–775 (2021). https://doi.org/10.1007/s10008-020-04851-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04851-4

Keywords

Navigation