Skip to main content

Advertisement

Log in

Improved photoelectrocatalytic activity of anodic TiO2 nanotubes by boron in situ doping coupled with geometrical optimization: Application of a potent photoanode in the purification of dye wastewater

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A comparative study on the photoelectrocatalytic activity of anodic TiO2 nanotubes (TNTs) and boron-doped TiO2 nanotubes (BTNTs) was performed through fabricating them in two distinguished fluoride-containing electrolytes, namely NH4F and NH4BF4. Furthermore, by applying anodization voltage (in the range of 40–60 V) as a regulating factor, an analogy was drawn between morphologies, optical properties, photoelectrochemical features, and photoelectrocatalytic activities of both TNTs and BTNTs. The results revealed that using NH4BF4 not only led to the introduction of boron into TiO2 lattices but also resulted in shorter nanotubes owing to their less corrosive effect compared with NH4F. Furthermore, anodization voltage had a significant impact on the optical properties; with increasing the voltage to 60 V, a red shift occurred in the band edge of both TNTs (from 3.05 to 2.8 eV) and BTNTs (from 2.9 to 2.6 eV). Particularly, via anodization at 60 V in NH4BF4 instead of NH4F, the photocurrent density and photoconversion efficiency increased from 0.19 to 0.67 Ma cm−2 and from 0.12 to 0.270%, respectively. Moreover, methylene blue degradation tests showed that BTNTs had an outstanding photoelectrocatalytic activity in comparison to TNTs; in this regard, the sample synthesized at 60 V in NH4BF4 rather than NH4F enhanced PEC degradation efficiency from 79 to 100% under UV irradiation. Finally, the kinetics investigation confirmed that all photoelectrocatalytic reactions in both groups followed the first-order kinetics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abdollahi Y, Abdullah AH, Zainal Z, Yusof NA (2011) Photocatalytic degradation of p-cresol by zinc oxide under UV irradiation. Int J Mol Sci 13:302–315

    Article  Google Scholar 

  2. Wang H, Liu X, Wang S, Li L (2018) Dual templating fabrication of hierarchical porous three-dimensional ZnO/carbon nanocomposites for enhanced photocatalytic and photoelectrochemical activity. Appl Catal B 222:209–218

    Article  CAS  Google Scholar 

  3. Georgieva J, Valova E, Armyanov S, Philippidis N, Poulios I, Sotiropoulos S (2012) Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes. J Hazard Mater 211-212:30–46

    Article  CAS  Google Scholar 

  4. Gilani N, Pasikhani JV, Motie PT, Akbari M (2019) Fabrication of quantum cu(II) nanodot decorated TiO2 nanotubes by the photochemical deposition-assisted hydrothermal method: study catalytic activity in hydrogen generation. Desalin Water Treat 139:145–155

    Article  CAS  Google Scholar 

  5. Su Y-F, Chou T-C (2005) Comparison of the photocatalytic and photoelectrocatalytic decolorization of methyl orange on sputtered TiO2 thin films. Z Naturforsch 60b:1158–1167

    Article  Google Scholar 

  6. Pasikhani JV, Gilani N, Pirbazari AE (2018) Improvement the wastewater purification by TiO2 nanotube arrays: the effect of etching-step on the photo-generated charge carriers and photocatalytic activity of anodic TiO2 nanotubes. Solid State Sci 84:57–74

    Article  CAS  Google Scholar 

  7. Wang H, Liu X, Niu P, Wang S, Shi J, Li L (2020) Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2:1377–1413

    Article  Google Scholar 

  8. Ge M, Li Q, Cao C, Huang J, Li S, Zhang S, Chen Z, Zhang K, Al-Deyab SS, Lai Y (2016) One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv Sci 4:1600152

    Article  Google Scholar 

  9. Ge M-Z, Cao C-Y, Huang J-Y, Li S-H, Zhang S-N, Deng S, Li Q-S, Zhang K-Q, Lai Y-K (2016) Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnol Rev 5:75–112

    Article  CAS  Google Scholar 

  10. Cai J, Shen J, Zhang X, Ng YH, Huang J, Guo W, Lin C, Lai Y (2018) Light-driven sustainable hydrogen production utilizing tio2 nanostructures: a review. Small Methods 3:1800184

    Article  Google Scholar 

  11. Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801

    Article  CAS  Google Scholar 

  12. Lai Y, Gong J, Lin C (2012) Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. Int J Hydrog Energy 37:6438–6446

    Article  CAS  Google Scholar 

  13. Ge M-Z, Cao C-Y, Li S-H, Tang Y-X, Wang L-N, Qi N, Huang J-Y, Zhang K-Q, Al-Deyab SS, Lai Y-K (2016) In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. Nanoscale 8:5226–5234

    Article  CAS  Google Scholar 

  14. Bessegato GG, Cardoso JC, Zanoni MVB (2015) Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes. Catal Today 240:100–106

    Article  CAS  Google Scholar 

  15. Geng H, Yin S, Yang X, Shuai Z, Liu B (2005) Geometric and electronic structures of the boron-doped photocatalyst TiO2. J Phys Condens Matter 18:87–96

    Article  Google Scholar 

  16. Li J, Lu N, Quan X, Chen S, Zhao H (2008) Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties. Ind Eng Chem Res 47:3804–3808

    Article  CAS  Google Scholar 

  17. Lu N, Quan X, Li J, Chen S, Yu H, Chen G (2007) Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J Phys Chem C 111:11836–11842

    Article  CAS  Google Scholar 

  18. Lu N, Zhao H, Li J, Quan X, Chen S (2008) Characterization of boron-doped TiO2 nanotube arrays prepared by electrochemical method and its visible light activity. Sep Purif Technol 62:668–673

    Article  CAS  Google Scholar 

  19. Subramanian A, Wang H-W (2012) Effects of boron doping in TiO2 nanotubes and the performance of dye-sensitized solar cells. Appl Surf Sci 258:6479–6484

    Article  CAS  Google Scholar 

  20. Li H, Xing J, Xia Z, Chen J (2014) Preparation of extremely smooth and boron-fluorine co-doped TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic performance. Electrochim Acta 139:331–336

    Article  CAS  Google Scholar 

  21. Siuzdak K, Szkoda M, Lisowska-Oleksiak A, Grochowska K, Karczewski J, Ryl J (2015) Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity. Appl Surf Sci 357:942–950

    Article  CAS  Google Scholar 

  22. Pasikhani JV, Gilani N, Pirbazari AE (2018) The correlation between structural properties, geometrical features, and photoactivity of freestanding TiO2 nanotubes in comparative degradation of 2,4-dichlorophenol and methylene blue. Mater Res Express 5:025016

    Article  Google Scholar 

  23. Pasikhani JV, Gilani N, Pirbazari AE (2016) The effect of the anodization voltage on the geometrical characteristics and photocatalytic activity of TiO2 nanotube arrays. Nano-Struct Nano-Objects 8:7–14

    Article  CAS  Google Scholar 

  24. Noeiaghaei T, Yun J-H, Nam SW, Zoh KD, Gomes VG, Kim JO, Chae SR (2015) The influence of geometrical characteristics on the photocatalytic activity of TiO2 nanotube arrays for degradation of refractory organic pollutants in wastewater. Water Sci Technol 71:1301–1309

    Article  CAS  Google Scholar 

  25. Khudhair D, Bhatti A, Li Y, Hamedani HA, Garmestani H, Hodgson P, Nahavandi S (2016) Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. Mater Sci Eng C 59:1125–1142

    Article  CAS  Google Scholar 

  26. Marien CB, Cottineau T, Robert D, Drogui P (2016) TiO2 nanotube arrays: influence of tube length on the photocatalytic degradation of Paraquat. Appl Catal B 194:1–6

    Article  CAS  Google Scholar 

  27. Yoo H, Oh K, Lee YR, Row KH, Lee G, Choi J (2017) Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: a binary catalyst for electrochemical water splitting. Int J Hydrog Energy 42:6657–6664

    Article  CAS  Google Scholar 

  28. Janekbary KK, Gilani N, Pirbazari AE (2020) One-step fabrication of Ag/RGO doped TiO2 nanotubes during anodization process with high photocatalytic performance. J Porous Mater. https://doi.org/10.1007/s10934-020-00954-5

  29. Dolgonos A, Mason TO, Poeppelmeier KR (2016) Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method. J Solid State Chem 240:43–48

    Article  CAS  Google Scholar 

  30. Yang K, Dai Y, Huang B (2007) Origin of the photoactivity in boron-doped anatase and rutile TiO2 calculated from first principles. Phys Rev B 76:1952011–1952016

    Google Scholar 

  31. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW (2017) Application of doped photocatalysts for organic pollutant degradation - a review. J Environ Manag 198:78–94

    Article  CAS  Google Scholar 

  32. Khan S, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245

    Article  CAS  Google Scholar 

  33. Aliabadi BG, Gilani N, Pasikhani JV, Pirbazari AE (2020) Boosting the photoconversion efficiency of TiO2 nanotubes using UV radiation-assisted anodization as a prospective method: an efficient photocatalyst for eliminating resistant organic pollutants. Ceram Int 46:19942–19951

    Article  CAS  Google Scholar 

  34. Dimitrov M, Ivanova R, Velinov N, Henych J, Slušná M, Štengl V, Tolasz J, Mitov I, Tsoncheva T (2016) Mesoporous TiO2 powders as host matrices for iron nanoparticles. Effect of the preparation procedure and doping with Hf. Nano-Struct Nano-Objects 7:56–63

    Article  CAS  Google Scholar 

  35. Zheng X, Li D, Li X, Yu L, Wang P, Zhang X, Fang J, Shao Y, Zheng Y (2014) Photoelectrocatalytic degradation of rhodamine B on TiO2 photonic crystals. Phys Chem Chem Phys 16:15299–15306

    Article  CAS  Google Scholar 

  36. Qin L, Chen Q, Lan R, Jiang R, Quan X, Xu B, Zhang F, Jia Y (2015) Effect of anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays. J Mater Sci Technol 31:1059–1064

    Article  CAS  Google Scholar 

  37. Lv Y, Pan C, Ma X, Zong R, Bai X, Zhu Y (2013) Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation. Appl Catal B 138-139:26–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would gracefully like to acknowledge Iran National Science Foundation (INSF) with Grant No: 97025674 for their unspeakable financial support.

Nomencalture

ERHE Reversible hydrogen electrode potential (V).

EAg/AgCl Ag/AgCl electrode potential (V).

E°Ag/AgCl Ag/AgCl standard electrode potential (V).

Dint Nanotubes’ inner diameter (nm).

L Nanotubes’ length (μm).

w Nanotubes’ wall thickness (nm).

Dext Nanotubes’ outer diameter (nm).

SA Nanotubes’ surface area (m2 m−2).

α Light absorption constant.

ϑ Radiation frequency.

A Planck constant.

Eg Band gap energy (eV).

ε Photoconversion efficiency.

jp Photocurrent density (mA cm−2).

E°rev Reversible standard potential (V).

Eapp Absolute potential applied to the photoanode (V).

I0 Intensity of light radiation.

Emeas Photoanode potential (V).

Eoc Open–circuit potential of photoanode (V).

C0 Initial concentration of methylene blue (ppm).

C Concentration of methylene blue at time “t” (ppm).

r Photoelectrocatalytic reaction rate (ppm min−1).

K Adsorption constant.

k Rate constant (min−1).

t Photoelectrocatalytic degradation time (min).

kapp Apparent rate constant (min−1).

UV Ultra-violet radiation.

Funding

The authors has financial support from the Iran National Science Foundation (INSF) with Grant No: 97025674.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Gilani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, R., Gilani, N., Pasikhani, J.V. et al. Improved photoelectrocatalytic activity of anodic TiO2 nanotubes by boron in situ doping coupled with geometrical optimization: Application of a potent photoanode in the purification of dye wastewater. J Solid State Electrochem 25, 545–560 (2021). https://doi.org/10.1007/s10008-020-04825-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04825-6

Keywords

Navigation