Skip to main content
Log in

Ensemble effects of nickel in surfactant-less prepared Pt-Ni materials on the carbon monoxide oxidative removal

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work reports the effect of the Ni content in a PtxNiy/C electrode on the CO oxidation reaction. A series of complementary and physicochemical techniques reveal the surface modification by the formation of Pt and Ni hydroxides which contribute to the removal of such model poisoning molecule in the utilization of organics as fuel in fuel cell applications. This cooperative activation of bimetallic materials, prepared without any organic surfactant, occurs at lower and lower potentials. As a result, a large 270 mV cathodic shift is observed when increasing the Ni amount up to 80% in the PtxNiy composition. XPS measurements are correlated with the electrochemical characterization of the PtxNiy/C electrodes surface through CO stripping investigations. Although there is a low shift of the Pt 4f7/2 peak, the presence of Ni-OH species in the close environment of Pt-COads mainly contributes to change the Langmuir-Hinshelwood mechanism into a bifunctional one which takes place at ca. 0.40 V vs. RHE.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Park S, Tong YY, Wieckowski A, Weaver MJ (2002) Infrared spectral comparison of electrochemical carbon monoxide adlayers formed by direct chemisorption and methanol dissociation on carbon-supported platinum nanoparticles. Langmuir 18(8):3233–3240. https://doi.org/10.1021/la0113825

    Article  CAS  Google Scholar 

  2. Park KW, Choi JH, Kwon BK, Lee SA, Sung Y, Ha H-Y, Hong S-A, Kim H, Wieckowski A (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106(8):1869–1877. https://doi.org/10.1021/jp013168v

    Article  CAS  Google Scholar 

  3. Babu PK, Chung JH, Kuk ST, Kobayashi T, Oldfield E, Wieckowski A (2005) Metallic nature and surface diffusion of CO adsorbed on Ru nanoparticles in aqueous media: a 13C NMR study. J Phys Chem B 109(7):2474–2477. https://doi.org/10.1021/jp040729k

    Article  CAS  PubMed  Google Scholar 

  4. Shao MH, Adzic RR (2005) Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study. Electrochim Acta 50(12):2415–2422. https://doi.org/10.1016/j.electacta.2004.10.063

    Article  CAS  Google Scholar 

  5. Arenz M, Stamenkovic V, Blizanac BB, Mayrhofer KJ, Markovic NM, Ross PN (2005) Carbon-supported Pt–Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures.: part II: the structure–activity relationship. J Catal 232(2):402–410. https://doi.org/10.1016/j.jcat.2005.03.022

    Article  CAS  Google Scholar 

  6. Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J Am Chem Soc 127(18):6819–6829. https://doi.org/10.1021/ja043602h

    Article  CAS  PubMed  Google Scholar 

  7. Colmati F, Antolini E, Gonzalez ER (2005) Pt–Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid. Electrochim Acta 50(28):5496–5503. https://doi.org/10.1016/j.electacta.2005.03.030

    Article  CAS  Google Scholar 

  8. Chen Z, Qiu X, Lu B, Zhang S, Zhu W, Chen L (2005) Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells. Electrochem Commun 7(6):593–596. https://doi.org/10.1016/j.elecom.2005.04.002

    Article  CAS  Google Scholar 

  9. Colmati F, Antolini E, Gonalez ER (2007) Ethanol oxidation on carbon supported Pt-Sn electrocatalysts prepared by reduction with formic acid. J Electrochem Soc 154(1):B39–B47. https://doi.org/10.1149/1.2382349

    Article  CAS  Google Scholar 

  10. Song S, Tsiakaras P (2006) Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal B Environ 63(3–4):187–193. https://doi.org/10.1016/j.apcatb.2005.09.018

    Article  CAS  Google Scholar 

  11. Simões FC, dos Anjos DM, Vigier F, Léger JM, Hahn F, Coutanceau C, Gonzalez ER, Tremiliosi-Filho G, de Andrade AR, Olivi P, Kokoh KB (2007) Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. J Power Sources 167(1):1–10. https://doi.org/10.1016/j.jpowsour.2006.12.113

    Article  CAS  Google Scholar 

  12. Chen C-C, Lin C-L, Chen L-C (2015) A binary palladium–bismuth nanocatalyst with high activity and stability for alkaline glucose electrooxidation. J Power Sources 287:323–333. https://doi.org/10.1016/j.jpowsour.2015.04.083

    Article  CAS  Google Scholar 

  13. Holade Y, Servat K, Napporn TW, Morais C, Berjeaud J-M, Kokoh KB (2016) Highly selective oxidation of carbohydrates in an efficient electrochemical energy converter: cogenerating organic electrosynthesis. ChemSusChem 9(3):252–263. https://doi.org/10.1002/cssc.201501593

    Article  CAS  PubMed  Google Scholar 

  14. Strmcnik DS, Tripkovic DV, van der Vliet D, Chang K-C, Komanicky V, You H, Karapetrov G, Greeley JP, Stamenkovic VR, Marković NM (2008) Unique activity of platinum adislands in the CO electrooxidation reaction. J Am Chem Soc 130(46):15332–15339. https://doi.org/10.1021/ja8032185

    Article  CAS  PubMed  Google Scholar 

  15. Rudi S, Teschner D, Beermann V, Hetaba W, Gan L, Cui C, Gliech M, Schlögl R, Strasser P (2017) pH-induced versus oxygen-induced surface enrichment and segregation effects in Pt–Ni alloy nanoparticle fuel cell catalysts. ACS Catal 7(9):6376–6384. https://doi.org/10.1021/acscatal.7b00996

    Article  CAS  Google Scholar 

  16. Holade Y, Servat K, Rousseau J, Canaff C, Poulin S, Napporn TW, Kokoh KB (2015) Electrochemical and physicochemical characterizations of gold-based nanomaterials: correlation between surface composition and electrocatalytic activity. J Electrochem Soc 162(14):H929–H937. https://doi.org/10.1149/2.0601514jes

    Article  CAS  Google Scholar 

  17. Dessources S, Morais C, Napporn TW, Kokoh KB (2016) Reversible electrocatalytic activity of carbon-supported PtxNi1−x in hydrogen reactions. ChemPhysChem 17(23):3964–3973. https://doi.org/10.1002/cphc.201600733

    Article  CAS  PubMed  Google Scholar 

  18. Corcoran CJ, Tavassol H, Rigsby MA, Bagus PS, Wieckowski A (2010) Application of XPS to study electrocatalysts for fuel cells. J Power Sources 195(24):7856–7879. https://doi.org/10.1016/j.jpowsour.2010.06.018

    Article  CAS  Google Scholar 

  19. Lai SCS, Lebedeva NP, Housmans THM, Koper MTM (2007) Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes. Top Catal 46(3–4):320–333. https://doi.org/10.1007/s11244-007-9010-y

    Article  CAS  Google Scholar 

  20. Bergelin M, Herrero E, Feliu JM, Wasberg M (1999) Oxidation of CO adlayers on Pt(111) at low potentials: an impinging jet study in H2SO4 electrolyte with mathematical modeling of the current transients. J Electroanal Chem 467(1–2):74–84. https://doi.org/10.1016/S0022-0728(99)00046-7

    Article  CAS  Google Scholar 

  21. Maillard F, Savinova ER, Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599(2):221–232. https://doi.org/10.1016/j.jelechem.2006.02.024

    Article  CAS  Google Scholar 

  22. Spendelow JS, Goodpaster JD, Kenis PJA, Wieckowski A (2006) Mechanism of CO oxidation on Pt(111) in alkaline media. J Phys Chem B 110(19):9545–9555. https://doi.org/10.1021/jp060100c

    Article  CAS  PubMed  Google Scholar 

  23. Farias MJS, Vidal-Iglesias FJ, Solla-Gullón J, Herrero E, Feliu JM (2014) On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium. J Electroanal Chem 716 (0):16–22. https://doi.org/10.1016/j.jelechem.2013.07.017

  24. Mukherjee AK, Sinha I (2009) Effect of the Eley-Rideal step on catalytic oxidation of CO under periodic external pressure. Appl Surf Sci 255(12):6168–6172. https://doi.org/10.1016/j.apsusc.2009.01.073

    Article  CAS  Google Scholar 

  25. Urchaga P, Baranton S, Coutanceau C, Jerkiewicz G (2012) Evidence of an Eley–Rideal mechanism in the stripping of a saturation layer of chemisorbed CO on platinum nanoparticles. Langmuir 28(36):13094–13104. https://doi.org/10.1021/la302388p

    Article  CAS  PubMed  Google Scholar 

  26. Roca-Ayats M, Guillén-Villafuerte O, García G, Soler-Vicedo M, Pastor E, Martínez-Huerta MV (2018) PtSn nanoparticles supported on titanium carbonitride for the ethanol oxidation reaction. Appl Catal B Environ 237:382–391. https://doi.org/10.1016/j.apcatb.2018.05.078

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the European Union (ERDF) and “Région Nouvelle-Aquitaine for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Napporn.

Additional information

This paper is dedicated to Professor José H. Zagal on the occasion of his 70th birthday and in recognition of his outstanding contribution to electrocatalysis.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dessources, S., Morais, C., Canaff, C. et al. Ensemble effects of nickel in surfactant-less prepared Pt-Ni materials on the carbon monoxide oxidative removal. J Solid State Electrochem 25, 219–223 (2021). https://doi.org/10.1007/s10008-020-04817-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04817-6

Keywords

Navigation