Skip to main content

Advertisement

Log in

Synthesis of α-Fe2O3 double-layer hollow spheres with carbon coating using carbonaceous sphere templates for lithium ion battery anodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, α-Fe2O3 double-layer hollow spheres with carbon coating (DLHS@C) are synthesized by a general “penetration-heterogeneous nucleation” approach using carbonaceous sphere templates combined with subsequent annealing. This hierarchy hollow sphere structure with carbon coating rationally combines three advantage aspects: shorten transport length for lithium ions and charges, sufficient void space to buffer the volume expansion, and enhanced electric conductivity. When tested for lithium storage, α-Fe2O3 DLHS@C composite electrode exhibits a high initial discharge capacity of 1735 mAh g-1 and the reversible capacity of 823 mAh g-1 after 100 cycles at the current density of 100 mA g-1 in the voltage range of 0.01–2.5 V (vs. Li+/Li) and retains a capacity of 470 mAh g-1 even at a large current density of 500 mA g-1 after 500 cycles. The α-Fe2O3 DLHS@C electrode demonstrates excellent electrochemical properties with high capacity, good cycling stability, and excellent rate capability as potential anode material for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  PubMed  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  PubMed  Google Scholar 

  3. Reddy MV, Mauger A, Julien CM, Paolella A, Zaghib K (2020) Brief history of early lithium-battery development. materials 13:1884

  4. Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473

    Article  CAS  PubMed  Google Scholar 

  5. Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270(5236):590–593

    Article  CAS  Google Scholar 

  6. Reddy MV, Zhang BC, Nicholette LJE, Zhang KM, Chowdari BVR (2011) Molten salt synthesis and its electrochemical characterization of Co3O4 for lithium batteries. Electrochem Solid ST 14(5):A79–A82

    Article  CAS  Google Scholar 

  7. Reddy MV, Kenrick KYH, Tang YW, Goh YC, Goh HL, Chowdari BVR (2011) Nano-ZnCo2O4 material preparation by molten salt method and its electrochemical properties for lithium batteries. J Electrochem Soc 12:A1423–A1430

    Article  CAS  Google Scholar 

  8. Reddy MV, Cai Y, Fan JH, Kian PL, Chowdari BVR (2012) Molten salt synthesis and energy storage studies on CuCo2O4 and CuO·Co3O4. RSC Adv 2(25):9619–9625

    Article  CAS  Google Scholar 

  9. Cherian CT, Sundaramurthy J, Reddy MV, Kumar PS, Mani K, Pliszka D, Sow CH, Ramakrishna S, Chowdari BVR (2013) Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces 5(20):9957–9963

    Article  CAS  PubMed  Google Scholar 

  10. Das B, Reddy MV, Chowdari BVR (2013) Li-storage of Fe3O4/C composite prepared by one-step carbothermal reduction method. J Alloys Compd 565:90–96

    Article  CAS  Google Scholar 

  11. Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890–1903

    Article  Google Scholar 

  12. Reddy MV, Xu YM, Rajarajan V, Ouyang TY, Chowdari BVR (2015) Template free facile molten synthesis and energy storage studies on MCo2O4 (M = Mg, Mn) as anode for Li-ion batteries. ACS Sustainable Chem Eng 3(12):3035–3042

    Article  CAS  Google Scholar 

  13. Darbara D, Reddy MV, Sundarrajan S, Pattabiraman R, Ramakrishna S, Chowdari BVR (2016) Anodic electrochemical performances of MgCo2O4 synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application. Mater Res Bull 73:369–376

    Article  CAS  Google Scholar 

  14. Larcher D, Masquelier C, Bonnin D, Chabre Y, Masson V, Leriche JB, Tarascon JM (2003) Effect of particle size on lithium intercalation into α-Fe2O3. J Electrochem Soc 150(1):A133–A139

    Article  CAS  Google Scholar 

  15. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113(7):5364–5457

    Article  CAS  Google Scholar 

  16. Reddy MV, Cherian CT, Ramanathan K, Jie KCW, Daryl TYW, Hao TY, Adams S, Loh KP, Chowdari BVR (2014) Molten synthesis of ZnO.Fe3O4 and Fe2O3 and its electrochemical performance. Electrochim Acta 118:75–80

    Article  CAS  Google Scholar 

  17. Cherian CT, Sundaramurthy J, Kalaivani M, Ragupathy P, Suresh Kumar P, Thavasi V, Reddy MV, Sow CH, Mhaisalkar SG, Ramakrishna S, Chowdari BVR (2012) Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. J Mater Chem 22(24):12198–12204

    Article  CAS  Google Scholar 

  18. Reddy MV, Yu T, Sow CH, Shen ZX, Lim CT, Subba Rao GV, Chowdari BVR (2007) α-Fe2O3 Nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17(15):2792–2799

    Article  CAS  Google Scholar 

  19. Reddy MV, Quan CY, Adams S (2018) Mg, Cu, Zn doped Fe2O3 as an electrode material for Li-ion batteries. Mater Lett 212:186–192

    Article  CAS  Google Scholar 

  20. Petnikota S, Maseed H, Srikanth VVSS, Reddy MV, Adams S, Srinivasan M, Chowdari BVR (2017) Experimental elucidation of a graphenothermal reduction mechanism of Fe2O3: An enhanced anodic behavior of an exfoliated reduced graphene oxide/Fe3O4 composite in Li-ion batteries. J Phys Chem C 121(7):3778–3789

    Article  CAS  Google Scholar 

  21. Wu YZ, Zhu PN, Reddy MV, Chowdari BVR, Ramakrishna S (2014) Maghemite nanoparticles on electrospun CNFs template as prospective lithium-ion battery anode. ACS Appl Mater Interfaces 6(3):1951–1958

    Article  CAS  PubMed  Google Scholar 

  22. Petnikota S, Marka SK, Banerjee A, Reddy MV, Srikanth VVSS, Chowdari BVR (2015) Graphenothermal reduction synthesis of ‘exfoliated graphene oxide/ iron (II) oxide’ composite for anode application in lithium ion batteries. J Power Sources 293:253–263

    Article  CAS  Google Scholar 

  23. Hu LL, Yang LP, Zhang D, Tao XS, Zeng C, Cao AM, Wan LJ (2013) Designed synthesis of SnO2-C hollow microspheres as an anode material for lithium-ion batteries. Chem Commun 53:11189–11192

    Article  Google Scholar 

  24. Guo WX, Sun WW, Lv LP, Kong SF, Wang Y (2017) Microwave-assisted morphology evolution of Fe-based metal−organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 11(4):4198–4205

    Article  CAS  PubMed  Google Scholar 

  25. Teng XL, Qin YZ, Wang X, Li HS, Shang XT, Fan ST, Li Q, Xu J, Cao DR, Li SD (2018) A nanocrystalline Fe2O3 film anode prepared by pulsed laser deposition for lithium-ion batteries. Nanoscale Res Lett 13(1):60–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sultana I, Rahman MM, Ramireddy T, Sharma N, Poddar D, Khalid A, Zhang HZ, Chen Y, Glushenkov AM (2015) Understanding structure-function relationship in hybrid Co3O4-Fe2O3/C lithium-ion battery electrodes. ACS Appl Mater Interfaces 7(37):20736–20744

    Article  CAS  PubMed  Google Scholar 

  27. Ma FX, Hu H, Wu HB, Xu CY, Xu ZC, Zhen L, Lou XW (2015) Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv Mater 27(27):4097–4101

    Article  CAS  PubMed  Google Scholar 

  28. Lei C, Han F, Li D, Li WC, Sun Q, Zhang XQ, Lu AH (2013) Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale 5(3):1168–1175

    Article  CAS  PubMed  Google Scholar 

  29. Yu L, Wu HB, Lou XW (2017) Self-templated formation of hollow structures for electrochemical energy applications. Acc Chem Res 50(2):293–301

    Article  CAS  PubMed  Google Scholar 

  30. Guan BY, Yu XY, Wu HB, Lou XW (2017) Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv Mater 29(47):1703614

    Article  CAS  Google Scholar 

  31. Qi XX, Zhang HZ, Zhang ZY, Bian YA, Shen A, Xu PP, Zhao YQ (2018) Subunits controlled synthesis of three-dimensional hierarchical flower-like α-Fe2O3 hollow spheres as high-performance anodes for lithium ion batteries. Appl Surf Sci 452:174–180

    Article  CAS  Google Scholar 

  32. Liu XD, Fan HT, Li B, Hu M, Hu YT, Liu M, Liu GY, Ma JM (2019) α-Fe2O3 hollow microspheres assembled by ultrathin nanoflakes exposed with (241) high-index facet: Solvothermal synthesis, lithium storage performance, and superparamagnetic property. Int J Hydrogen Energy 44(2):1070–1077

    Article  CAS  Google Scholar 

  33. Wang X, Wu XL, Guo YG, Zhong YT, Cao XQ, Ma Y, Yao JN (2010) Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv Funct Mater 20(10):1680–1686

    Article  CAS  Google Scholar 

  34. Zhang GQ, Yu L, Wu HB, Hoster HE, Lou XW (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24(34):4609–4613

    Article  CAS  PubMed  Google Scholar 

  35. Bin DS, Chi ZX, Li YT, Zhang K, Yang XZ, Sun YG, Piao JY, Cao AM, Wan LJ (2017) Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. J Am Chem Soc 139(38):13492–13498

    Article  CAS  PubMed  Google Scholar 

  36. Wang JY, Tang HJ, Ren H, Yu RB, Qi J, Mao D, Zhao HJ, Wang D (2014) pH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv Sci 1:1400011

    Article  CAS  Google Scholar 

  37. Liu JH, Liu XW (2012) Two-dimensional nanoarchitectures for lithium storage. Adv Mater 24(30):4097–4111

    Article  CAS  PubMed  Google Scholar 

  38. Lai XY, Halperta JE, Wang D (2012) Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ Sci 5(2):5604–5618

    Article  CAS  Google Scholar 

  39. Sun XX, Li YD (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43(5):597–601

    Article  CAS  Google Scholar 

  40. Wang Y, Guo XM, Wang ZK, Lü MF, Wu B, Wang Y, Yan C, Yuan AH, Yang HH (2017) Controlled pyrolysis of MIL-88A to Fe2O3@C nanocomposites with varied morphologies and phases for advanced lithium storage. J Mater Chem A 5(48):25562–25573

    Article  CAS  Google Scholar 

  41. Jiang Y, Jiang ZJ, Yang LF, Cheng S, Liu ML (2015) A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J Mater Chem A 3(22):11847–11856

    Article  CAS  Google Scholar 

  42. Yang Z, Su DY, Yang JP, Wang J (2017) Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries. J Power Sources 363:161–167

    Article  CAS  Google Scholar 

  43. Mohapatra J, Mitra A, Tyagi H, Bahadur D, Aslam M (2015) Iron oxide nanorods as high–performance magnetic resonance imaging contrast agents. Nanoscale 7(20):9174–9184

    Article  CAS  PubMed  Google Scholar 

  44. Wang W, Qin JW, Cao MH (2016) Structure interlacing and pore engineering of Zn2GeO4 nanofibers for achieving high capacity and rate capability as an anode material of lithium ion batteries. ACS Appl Mater Interfaces 8(2):1388–1397

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Li Q, Liu JW, You WB, Fang F, Wang M, Che RC (2018) Hierarchical Fe2O3@C@MnO2@C multi-shell nanocomposites for high performance lithium-ion battery and catalyst. Langmuir 34(18):5225–5233

    Article  CAS  PubMed  Google Scholar 

  46. Liu YJ, Wang WQ, Chen QD, Xu C, Cai DP, Zhan HB (2019) Resorcinol− formaldehyde resin-coated prussian blue core−shell spheres and their derived unique yolk−shell FeS2@C spheres for lithium-ion batteries. Inorg Chem 58(2):1330–1338

    Article  CAS  PubMed  Google Scholar 

  47. Xie ZW, Yu ZL, Fan WF, Peng GC, Qu MZ (2015) Effects of functional groups of graphene oxide on the electrochemical performance of lithium-ion batteries. RSC Adv 5(109):90041–90048

    Article  CAS  Google Scholar 

  48. Qiu J, Li MJ, Zhao Y, Kong QS, Li XG, Li CX (2016) Scalable synthesis of nanometric α-Fe2O3 within interconnected carbon shells from pyrolytic alginate chelates for lithium storage. RSC Adv 6(10):7961–7969

    Article  CAS  Google Scholar 

  49. Xiao LF, Li JP, Li Q, Zhang LL (2010) One-pot template-free synthesis, formation mechanism, and lithium ions storage property of hollow SnO2 microspheres. J Solid State Electrochem 14(6):931–936

    Article  CAS  Google Scholar 

  50. Sun B, Horvat J, Kim HS, Kim WS, Ahn J, Wang GX (2010) Synthesis of mesoporous γ-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J Phys Chem C 114(44):18753–18761

    Article  CAS  Google Scholar 

  51. Shao J, Wan ZM, Liu HM, Zheng HY, Gao T, Shen M, Qu QT, Zheng HH (2014) Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J Mater Chem A 2(31):12194–12200

    Article  CAS  Google Scholar 

  52. Wang B, Wu HB, Zhang L, Lou XW (2013) Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew Chem 125(15):4259–4262

    Article  Google Scholar 

  53. Cherian CT, Zheng MR, Reddy MV, Chowdari BVR, Sow CH (2013) Zn2SnO4 nanowires versus nanoplates: electrochemical performance and morphological evolution during Li-cycling. ACS Appl Mater Interfaces 5(13):6054–6060

    Article  CAS  PubMed  Google Scholar 

  54. Reddy MV, Andreea LYT, Ling AY, Hwee JNC, Lin CA, Admas S, Loh KP, Mathe MK, Ozoemena KI, Chowdari BVR (2013) Effect of preparation temperature and cycling voltage range on molten salt method prepared SnO2. Electrochim Acta 106:143–148

    Article  CAS  Google Scholar 

  55. Reddy MV, Subba Rao GV, Chowdari BVR (2011) Nano-(V1/2Sb1/2Sn)O4: a high capacity, high rate anode material for Li-ion batteries. J Mater Chem 21(27):10003–10011

    Article  CAS  Google Scholar 

  56. Reddy MV, Wen BLW, Loh KP, Chowdari BVR (2013) Energy storage studies on InVO4 as high performance anode material for Li-Ion batteries. ACS Appl Mater Interfaces 5(16):7777–7785

    Article  CAS  PubMed  Google Scholar 

  57. Wu ZG, Zhong YJ, Li JT, Guo XD, Huang L, Zhong BH, Sun SG (2014) L-Histidine-assisted template-free hydrothermal synthesis of α-Fe2O3 porous multi-shelled hollow spheres with enhanced lithium storage properties. J Mater Chem A 2(31):12361–12367

    Article  CAS  Google Scholar 

  58. Banerjee A, Aravindan V, Bhatnagar S, Mhamane D, Madhavi S, Ogale S (2013) Superior lithiumstorageproperties of α-Fe2O3 nano-assembledspindles. Nano Energy 2(5):890–896

    Article  CAS  Google Scholar 

  59. Han WJ, Qin XY, Wu JX, Li Q, Liu M, Xia Y, Du HD, Li BH, Kang FY (2018) Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Res 11(2):892–904

    Article  CAS  Google Scholar 

  60. Wang B, Chen JS, Wu HB, Wang ZY, Lou XW (2011) Quasiemulsion- templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc 133(43):17146–17148

    Article  CAS  PubMed  Google Scholar 

  61. Wang ZK, Zhang ZR, Xia J, Wang W, Sun SS, Liu L, Yang HX (2018) Fe2O3@C core@shell nanotubes: porous Fe2O3 nanotubes derived from MIL-88A as cores and carbon as shells for high power lithium ion batteries. J Alloys Compd 769:969–976

    Article  CAS  Google Scholar 

  62. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887

    Article  CAS  Google Scholar 

  63. Chen MH, Xia XH, Yuan JF, Yin JH, Chen QG (2015) Free-standing three- dimensional continuous multilayer V2O5 hollow sphere arrays as high-performance cathode for lithium batteries. J Power Sources 288:145–149

    Article  CAS  Google Scholar 

  64. Nithyadharseni P, Reddy MV, Nalini B, Kalpana M, Chowdari BVR (2015) Sn-based intermetallic alloy anode materials for the application of lithium ion batteries. Electrochim Acta 161:261–268

    Article  CAS  Google Scholar 

  65. Jia XL, Chen Z, Suwarnasarn A, Rice L, Wang XL, Sohn H, Zhang Q, Wu BM, Wei F, Lu YF (2012) High-performance flexible lithium-ion electrodes based on robust network architecture. Energy Environ Sci 5(5):6845–6849

    Article  CAS  Google Scholar 

  66. Cui CJ, Sun XC, Li XC, Li CB, Niu YS (2015) Carbon nanospheres as an anode material for lithium ion batteries with excellent rate capability. RSC Adv 5(68):55348–55352

    Article  CAS  Google Scholar 

  67. Chen QW, Zhong W, Zhang JN, Gao CL, Liu WL, Li GD, Ren MM (2019) Fe3O4 nanorods in N-doped carbon matrix with pseudo-capacitive behaviors as an excellent anode for subzero lithium-ion batteries. J Alloys Compd 772:557–564

    Article  CAS  Google Scholar 

  68. Park GD, Hong JH, Jung DS, Lee JH, Kang YC (2019) Unique structured microspheres with multishells comprising graphitic carbon-coated Fe3O4 hollow nanopowders as anode materials for highperformance Li-ion batteries. J Mater Chem A 7(26):15766–15773

    Article  CAS  Google Scholar 

  69. Zhang LH, Wei T, Jiang ZM, Liu CQ, Jiang H, Chang J, Sheng LZ, Zhou QH, Yuan LB, Fan ZJ (2018) Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage. Nano Energy 48:238–247

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (51603147) and Tianjin application foundation and advanced technology research plan project (15ZCZDGX00270 and 14RCHZGX00859).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guifang Zhang or Zhiqiang Shi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Zhang, G., Zhang, X. et al. Synthesis of α-Fe2O3 double-layer hollow spheres with carbon coating using carbonaceous sphere templates for lithium ion battery anodes. J Solid State Electrochem 25, 267–278 (2021). https://doi.org/10.1007/s10008-020-04799-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04799-5

Keywords

Navigation