Epoxy-silica/clay nanocomposite for silver-based antibacterial thin coatings: structure and ionic mobility

Abstract

A novel material was developed using sol-gel chemistry and an environmental-friendly grafting process of clay nanoparticles. In a previous work of our group, highly compact coatings had been generated using silicon alkoxides, as tetraethoxysilane (TEOS) and 3-glycidoxypropyl-trimethoxysilane (GPTMS), with the incorporation of silver ions and synthetic smectite-type clay nanoparticles, demonstrating antibacterial behaviour against Escherichia coli cultures. By controlling the loading, the exfoliation and the grafting processes of the clay nanoparticles, it was possible to control the migration kinetics of silver ions from the coating matrix to the surface. Morphological and structural studies, through SEM-FIB, revealed the effect of clay nanoparticles leading to the development of a homogeneous structure in 2-μm thickness coatings. Grazing incidence small angle X-ray scattering (GISAXS) experiments demonstrated that silver is distributed in a strongly anisotropic arrangement when clay nanosheets are absent. The size of the silver particles developed on the surface is rather different from that of those developed in the bulk of the coating. Scattering patterns also revealed that the incorporation of clay nanosheets promotes the development of less anisotropic structures. Electrochemical impedance spectroscopy (EIS) measurements confirmed the integrity of the material and the applicability of a physical model with normal distribution of resistive and capacitive elements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Miyoshi H, Ohno H, Sakai K, Okamura N, Kourai H (2010) Characterization and photochemical and antibacterial properties of highly stable silver nanoparticles prepared on montmorillonite clay in n-hexanol. J Colloid Interface Sci 345(2):433–441

    CAS  Article  Google Scholar 

  2. 2.

    Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair Regen 12(3):288–294

    Article  Google Scholar 

  3. 3.

    Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50(1):753–789

    CAS  Article  Google Scholar 

  4. 4.

    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    CAS  Article  Google Scholar 

  5. 5.

    Hofacker S, Mechtel M, Mager M, Kraus H (2002) Sol–gel: a new tool for coatings chemistry. Prog Org Coat 45(2-3):159–164

    CAS  Article  Google Scholar 

  6. 6.

    Saraidarov T, Levchenko V, Reisfeld R (2010) Synthesis of silver nanoparticles and their stabilization in different sol-gel matrices: optical and structural characterization. Phys Status Solidi C 11–12:2648

    Article  Google Scholar 

  7. 7.

    Gettler AO, Rhoades CP, Weiss S (1927) Contribution to the pathology of generalised argyria withdiscussion on the fate of silver in the human body. Am J Pathol 3:631

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, von Eiff C (2004) Silver-coated megaendoprostheses in a rabbit model--an analysis of the infection rate and toxicological side effects. Biomaterials 25(24):5547–5556

    CAS  Article  Google Scholar 

  9. 9.

    He W, Wu D, Li J, Zhang K, Xiang Y, Long L, Qin S, Yu J, Zhang Q (2013) Surface modification of colloidal silica nanoparticles: controlling the size and grafting process. Bull Kor Chem Soc 34(9):2747–2752

    CAS  Article  Google Scholar 

  10. 10.

    Wheeler PA, Wang J, Baker J, Mathias LJ (2005) Synthesis and characterization of covalently functionalized laponite clay. Chem Mater 17(11):3012–3018

    CAS  Article  Google Scholar 

  11. 11.

    Santana I, Pepe A, Schreiner W, Pellice S, Ceré S (2015) Hybrid sol-gel coatings containing clay nanoparticles for corrosion protection of mild steel. Electrochim Acta 203:396

    Article  Google Scholar 

  12. 12.

    Deflorian F, Rossi S, Fedel M, Motte C (2010) Electrochemical investigation of high-performance silane sol–gel films containing clay nanoparticles. Prog Org Coat 69(2):158–166

    CAS  Article  Google Scholar 

  13. 13.

    Liu C, Bi Q, Leyland A, Matthews A (2003) An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: part I. establishment of equivalent circuits for EIS data modelling. Corros Sci 45(6):1243

    CAS  Article  Google Scholar 

  14. 14.

    Procaccini R, Bouchet A, Pastore JI, Studdert C, Ceré S, Pellice S (2016) Silver-functionalized methyl-silica hybrid materials as antibacterial coatings on surgical-grade stainless steel. Prog Org Coat 97:28–36

    CAS  Article  Google Scholar 

  15. 15.

    ZView 3.4e©, Scribner Associates, Inc.

  16. 16.

    ZSimpWin 3.21© EChem Software

  17. 17.

    Giraldo Mejía HF, Yohai L, Pedetta A, Herrera Seitz K, Procaccini RA, Pellice SA (2017) Epoxy-silica/clay nanocomposite for silver-based antibacterial thin coatings: synthesis and structural characterization. J Colloid Interface Sci 508:332–341

    Article  Google Scholar 

  18. 18.

    Hu S, Rieger J, Roth SV, Gehrke R, Leyrer RJ, Men Y (2009) GIUSAXS and AFM studies on surface reconstruction of latex thin films during thermal treatment. Langmuir 25(7):4230–4234

    CAS  Article  Google Scholar 

  19. 19.

    Huber P, Bunk O, Pietsch U, Textor M, Geue T (2010) Grazing incidence small angle X-ray scattering on colloidal crystals. J Phys Chem B 39:12473

    Article  Google Scholar 

  20. 20.

    Weast RC (ed) (1989) CRC Handbook of Chemistry and Physics, 70th edn. CRC press, Boca Raton

    Google Scholar 

  21. 21.

    Wolf AV (1966) Aqueous Solutions and Body Fluids. Harper and row, New York

    Google Scholar 

  22. 22.

    Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176(1-2):275–295

    CAS  Article  Google Scholar 

  23. 23.

    Hirschron B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta 55(21):6218–6227

    Article  Google Scholar 

  24. 24.

    Figueiredo M, Gomes C, Costa R, Martins A, Pereira CM, Silva F (2009) Differential capacity of a deep eutectic solvent based on choline chloride and glycerol on solid electrodes. Electrochim Acta 54(9):2630–2634

    CAS  Article  Google Scholar 

  25. 25.

    Pell WG, Zolfaghari A, Conway BE (2002) Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surface-oxide film. J Electroanal Chem 532(1–2):13–23

    CAS  Article  Google Scholar 

  26. 26.

    Jovic VD, Jovic BM (2003) EIS and differential capacitance measurements onto single crystal faces in different solutions: part II: Cu(111) and Cu(100) in 0.1 M NaOH. J Electroanal Chem 541:13–21

    CAS  Article  Google Scholar 

  27. 27.

    Jurczakowski R, Hitz C, Lasia A (2004) Impedance of porous Au based electrodes. J Electroanal Chem 572(2):355–366

    CAS  Article  Google Scholar 

  28. 28.

    Zalewska T, Lisowska-Oleksiak A, Biallozor S, Jasulaitiene V (2000) Polypyrrole films polymerised on a nickel substrate. Electrochim Acta 45(24):4031–4040

    CAS  Article  Google Scholar 

  29. 29.

    Harrington SP, Devine TM (2008) Analysis of electrodes displaying frequency dispersion in Mott-Schottky tests. J Electrochem Soc 155:C381

    CAS  Article  Google Scholar 

  30. 30.

    Harrington SP, Devine TM (2009) Relation between the semiconducting properties of a passive film and reduction reaction rates. J Electrochem Soc 156(4):C154

    CAS  Article  Google Scholar 

  31. 31.

    Hsu CH, Mansfeld F (2001) Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57(9):747–748

    CAS  Article  Google Scholar 

  32. 32.

    Young HD, Freedman RA, Sandin TR, Lewis Ford A (1982) Sears & Zemansky´s University Physics, 6th edn. Addison-Wesley series

  33. 33.

    Musiani M, Orazem ME, Pébère N, Tribollet B, Vivier V (2011) Constant-phase-element behavior caused by coupled resistivity and permittivity distributions in films. J Electrochem Soc 158:C424

    CAS  Article  Google Scholar 

  34. 34.

    Lavaert L, Cock MD, Moors M, Wettinck E (2000) Influence of pores on the quality of a silicon polyester coated galvanised steel system. Prog Org Coat 38(3-4):213–221

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Mr. Martin Lere (CONICET, Argentina) is acknowledged by the technical support. Dr. Antonio Gasperini (CNPEM, Brazil) and Dr. Silvia Ceré (CONICET-UNMdP) are greatly acknowledged for their helpful assistances with GISAXS and electrochemical interpretation respectively. Finally, the authors express their appreciation to Dr. Marcela Vázquez (CONICET-UNMdP) for providing assistance with the English grammar of the manuscript.

Funding

Authors want to acknowledge the Argentine National Council of Scientific and Technical Research (CONICET, PIP 2014-0175), the ANPCyT (PICTs 2017-3762 and 2017-1594) and to the National Synchrotron Light Laboratory (LNLS, Brazil; Project 6780/10—Proposal 20160216) for financial supports.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raúl Procaccini.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mejía, H.F.G., Jiménez-Piqué, E., Valdés, M. et al. Epoxy-silica/clay nanocomposite for silver-based antibacterial thin coatings: structure and ionic mobility. J Solid State Electrochem 24, 2451–2460 (2020). https://doi.org/10.1007/s10008-020-04784-y

Download citation

Keywords

  • Sol-gel
  • Silanization
  • Ionic mobility
  • GISAXS
  • EIS