Skip to main content
Log in

In-situ synthesis of Ta2O5@few-layered rGO core-shell nanosphere with abundant oxygen vacancies for highly stable lithium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Metal oxide is a promising anode material in LIBs, which can be further improved by covering with few-layered graphene oxide (FL-rGO). Furthermore, the formation of oxygen vacancies can greatly improve the electrochemical performance; however, the concentration regulation of oxygen defects remains a challenge. In this work, a facile in situ calcination was explored to synthesize Ta2O5@FL-rGO core-shell nanospheres with abundant oxygen vacancies between Ta2O5 and few-layered graphene oxide. And the as-prepared Ta2O5@FL-rGO exhibited highly electrochemical performance, including superior conductivity, high reversible capacity (442.3 mA h g−1 at 0.1 A g−1 after 100 cycles), good cycling performance (288.7 mA h g−1 at 5 A g−1 over 600 cycles), and excellent rate capability, compared with that of bare Ta2O5 and other Ta2O5 based electrode in the literature.

Ta2O5@few-layered rGO core-shell nanospheres with abundant oxygen vacancies were obtained by in-situ calcination and exhibited highly electrochemical performance as LIBs anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  CAS  PubMed  Google Scholar 

  2. Tang YX, Zhang YY, Li WL, Ma B, Chen XD (2015) Cheminform abstract: rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev 44(17):5926–5940

    Article  CAS  PubMed  Google Scholar 

  3. Sun Y, Liu N, Cui Y (2016a) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1(7):16071

    Article  CAS  Google Scholar 

  4. Ma L, Hendrickson KE, Wei SY, Archer LA (2015) Nanomaterials: science and applications in the lithium-sulfur battery. Nano Today 10(3):315–338

    Article  CAS  Google Scholar 

  5. Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46(10):3006–3059

    Article  CAS  PubMed  Google Scholar 

  6. Niu JL, Zeng CH, Peng HJ, Lin XM, Sathishkumar P, Cai YP (2017) Formation of N-doped carbon-coated ZnO/ZnCo2O4/CuCo2O4 derived from a Polymetallic metal-organic framework: toward high-rate and long-cycle-life Lithium storage. Small 13(47):1702150

    Article  CAS  Google Scholar 

  7. Khan Z, Park S, Hwang S et al (2016) Hierarchical urchin-shaped α-MnO2 on graphene-coated carbon microfibers: a binder-free electrode for rechargeable aqueous Na-air battery. NPG Asia Mater 8:e294

    Article  Google Scholar 

  8. Xu XJ, Ji SM, Gu MZ, Liu J (2015) In situ synthesis of MnS hollow microspheres on reduced Graphene oxide sheets as high-capacity and long-life anodes for Lithium-ion and sodium-ion batteries. ACS Appl Mater Interfaces 7(37):20957–20964

    Article  CAS  PubMed  Google Scholar 

  9. Khan Z, Senthilkumar B, Park SO, Park S, Yang J, Lee JH, Song HK, Kim Y, Kwak SK, Ko H (2017) Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na-air battery. J Mater Chem A 5(5):2037–2044

    Article  CAS  Google Scholar 

  10. Lin J, Zeng CH, Lin XM, Chenna Krishna Reddy R, Niu JL, Liu JC, Cai YP (2019) Trimetallic MOF-derived Cu0.39Zn0.14Co2.47O4-CuO interwoven with carbon nanotubes on copper foam for superior Lithium storage with boosted kinetics. ACS Sustain Chem Eng 7(18):15684–15695

    Article  CAS  Google Scholar 

  11. Deng LJ, Zhang GN, Kang LP, Lei ZB, Liu CL, Liu ZH (2013) Graphene/VO2 hybrid material for high performance electrochemical capacitor. Electrochim Acta 112:448–457

    Article  CAS  Google Scholar 

  12. Liu J, Wan YL, Liu W, Ma ZS, Ji SM, Wang JB, Zhou YC, Hodgson P, Li YC (2013) Mild and cost-effective synthesis of iron fluoride-graphene nanocomposites for high-rate Li-ion battery cathodes. J Mater Chem A 1(6):1969–1975

    Article  CAS  Google Scholar 

  13. Niu JL, Peng HJ, Zeng CH, Lin XM, Sathishkumar P, Cai YP, Xu AW (2018) An efficient multidoped Cu0.39Zn0.14Co2.47O4-ZnO electrode attached on reduced graphene oxide and copper foam as superior lithium-ion battery anodes. Chem Eng J 336:510–517

    Article  CAS  Google Scholar 

  14. Liu H, Du XW, Xing XR, Wang G, Qiao SZ (2011) Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. Chem Commun 48:865–867

    Article  Google Scholar 

  15. Wang H, Mao N, Shi J, Wang Q, Yu W, Wang X (2015) Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7(4):2882–2890

    Article  CAS  PubMed  Google Scholar 

  16. Zhao G, Ye C, Zhang L, Li C, Sun K (2017) T-Nb2O5 quantum dots prepared by elecrodeposition for fast Li ion intercalation/deintercalation. Nanotechnology 28(21):215401

    Article  PubMed  CAS  Google Scholar 

  17. Peng Q, Wang ZY, Sa BS, Wu B, Sun ZM (2016) Blue Phosphorene/MS2 (M = Nb, ta) Heterostructures as promising flexible anodes for lithium-ion batteries. ACS Appl Mater Interfaces 8(21):13449–13457

    Article  CAS  PubMed  Google Scholar 

  18. Tian Q, Li L, Chen J, Yang L, Hirano SI (2018) Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage. J Power Sources 376:1–10

    Article  CAS  Google Scholar 

  19. Zhang NS, Guo GH, He BW, Zhu JX, Wu J, Qiu JH (2020) Synthesis of TiO2/S@PPy composite for chemisorption of polysulfides in high performance Li-S batteries. J Solid State Electrochem 24(3):591–599

    Article  CAS  Google Scholar 

  20. Alizadeh T, Nayeri S (2018) Electrocatalytic oxidation of salicylic acid at a carbon paste electrode impregnated with cerium-doped zirconium oxide nanoparticles as a new sensing approach for salicylic acid determination. J Solid State Electrochem 22(7):2039–2048

    Article  CAS  Google Scholar 

  21. Lin J, Zeng CH, Wang LM, Pan YY, Lin XM, Chenna Krishna Reddy R, Cai YP, Su CY (2020b) Self-standing MOF-derived LiCoO2 nanopolyhedron on au-coated copper foam as advanced 3D cathodes for lithium-ion batteries. Appl Mater Today 19:100565

    Article  Google Scholar 

  22. Cong L, Xie H, Li J (2017) Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv Energ Mater 7:16019061–160190636

    Article  CAS  Google Scholar 

  23. Lin XM, Lin J, Zeng CH, Niu JL, Chenna Krishna Reddy R, Liu JC, Cai YP, Yuan ZZ (2020a) Copper nanowires and copper foam multifunctional bridges in zeolitic imidazolate framework-derived anode material for superior lithium storage. J Colloid Interf Sci 565:156–166

    Article  CAS  Google Scholar 

  24. Jung CH, Choi J, Kim WS, Hong SH (2018) A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries. J Mater Chem A 6(17):8013–8020

    Article  CAS  Google Scholar 

  25. Lin XM, Lin J, Niu JL, Lan JJ, Chenna Krishna Reddy R, Cai YP, Liu JC, Zhang G (2018) In situ synthesis of Cu2O-CuO-C supported on copper foam as a superior binder-free anode for long-cycle lithium-ion batteries. Mater Chem Front 2(12):2254–2262

    Article  CAS  Google Scholar 

  26. Yin J, Carlin JM, Kim J, Li Z, Park JH, Patel B et al (2015) Synergy between metal oxide nanofibers and graphene nanoribbons for rechargeable lithium-oxygen battery cathodes. Adv Energ Mater 5:1–8

    Article  CAS  Google Scholar 

  27. Shang H, Zuo Z, Yu L, Wang F, He F, Li Y (2018) Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries. Adv Mater 30(27):1801459

    Article  CAS  Google Scholar 

  28. Keppeler M, Shen N, Nageswaran S, Srinivasan M (2016) Synthesis of α-Fe2O3/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. J Mater Chem A 4(47):18223–18239

    Article  CAS  Google Scholar 

  29. Petnikota S, Rotte NK, Reddy MV, Srikanth VVSS, Chowdari BVR (2015) MgO-decorated few-layered graphene as an anode for Li-ion batteries. ACS Appl Mater Interfaces 7(4):2301–2309

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Zhu P, Huang L, Xie J, Zhang S, Cao G, Zhao X (2015) Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv Funct Mater 25(3):481–489

    Article  CAS  Google Scholar 

  31. Li FH, Na HY, Jin W, Xu XY, Gao JP (2018) Facile synthesis of CoWO4/rGO composites as superior anode materials for lithium-ion batteries. J Solid State Electrochem 22:1–8

    Article  CAS  Google Scholar 

  32. Zhao L, Duan H, Zhao YM, Kuang Q, Dong YZ (2018) High capacity and stability of Nb-doped Li3VO4 as an anode material for lithium ion batteries. J Power Sources 378:618–627

    Article  CAS  Google Scholar 

  33. Wang HK, Fu F, Zhang FH, Wang HE, Rogach AL (2012) Hydrothermal synthesis of hierarchical SnO2 microspheres for gas sensing and lithium-ion batteries applications: fluoride-mediated formation of solid and hollow structures. J Mater Chem 22(5):2140–2148

    Article  CAS  Google Scholar 

  34. Pei B, Yao HX, Zhang WX, Yang ZH (2012) Hydrothermal synthesis of morphology-controlled LiFePO4 cathode material for lithium-ion batteries. J Power Sources 220:317–323

    Article  CAS  Google Scholar 

  35. Guo J, Wu W, Wang J, Zhang T, Deng Y (2020) Artificial solid electrolyte interphase modified porous SiOx composite as anode material for lithium ion batteries. Solid State Ionics 347:115272

    Article  CAS  Google Scholar 

  36. Park MS, Needham SA, Wang GX, Kang YM, Park JS, Dou SX, Liu HK (2007) Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries. Chem Mater 19(10):2406–2410

    Article  CAS  Google Scholar 

  37. Cheng YH, Chen Z, Wu HB, Zhu MF, Lu YF (2016) Ionic liquid-assisted synthesis of TiO2-carbon hybrid nanostructures for lithium-ion batteries. Adv Funct Mater 26(9):1338–1346

    Article  CAS  Google Scholar 

  38. Wang M, Ma R, Liu Y, Chung CY, Lu Z (2017) Ionic liquid mediated synthesis of lath shaped CuO micro-assembles as extremely stable anode material for lithium-ion batteries. Chin J Chem 35(8):1299–1304

    Article  CAS  Google Scholar 

  39. Qi YC, Zhang C, Liu ST, Zong YQ, Men Y (2018) Room-temperature synthesis of ZnO@GO nanocomposites as anode for lithium-ion batteries. J Mater Res 33(10):1506–1514

    Article  CAS  Google Scholar 

  40. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  PubMed  Google Scholar 

  41. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132(40):14067–14069

    Article  CAS  PubMed  Google Scholar 

  42. Jiao LT, Wang XR, Diankov G, Wang HL, Dai HJ (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotech 5(5):321–325

    Article  CAS  Google Scholar 

  43. Mao W, Ai G, Dai Y, Fu Y, Ma Y, Shi S, Soe R, Zhang X, Qu D, Tang Z, Battaglia VS (2016) In-situ synthesis of MnO2@CNT microsphere composites with enhanced electrochemical performances for lithium-ion batteries. J Power Sources 310:54–60

    Article  CAS  Google Scholar 

  44. Wang S, Yao TR, Li BZ, Li Y, Yang YG (2020) Fabrication of Ta2O5@C/F composite nanotubes as stable anode material for Lithium-ion batteries. Mater Lett 267:127545

    Article  CAS  Google Scholar 

  45. Xia SL, Ni JF, Savilov SV, Li L (2018) Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy 45:407–412

    Article  CAS  Google Scholar 

  46. Fu ZW, Huang F, Chu YQ, Zhang Y, Qin QZ (2003) Characterization of amorphous Ta2O5 film as a novel anode material. J Electrochem Soc 150(6):A776–A782

    Article  CAS  Google Scholar 

  47. Pan L, Huang HJ, Liu T, Niederberger M (2019) Structurally disordered Ta2O5 aerogel for high-rate and highly stable Li-ion and Na-ion storage through surface redox pseudocapacitance. Electrochim Acta 321:134645

    Article  CAS  Google Scholar 

  48. Dang HX, Lin YM, Klavetter KC, Cell TH, Adam Heller P, Buddie Mullins PC (2014) Lithium insertion/Deinsertion characteristics of nanostructured amorphous tantalum oxide thin films. ChemElectroChem 1(1):158–164

    Article  CAS  Google Scholar 

  49. Manukumar KN, Kishore B, Manjunath K, Nagaraju G (2018) Mesoporous Ta2O5 nanoparticles as an anode material for lithium ion battery and an efficient photocatalyst for hydrogen evolution. Inter J Hydrogen Energy 43(39):18125–18135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by National Natural Science Foundation of China (Grants 21865019 and 21777078). And we would like to acknowledge the major basic research and open project of the Inner Mongolia Autonomous Region (30500-515330303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanli Chai.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, X., Bai, P., Yang, T. et al. In-situ synthesis of Ta2O5@few-layered rGO core-shell nanosphere with abundant oxygen vacancies for highly stable lithium-ion battery. J Solid State Electrochem 24, 1567–1575 (2020). https://doi.org/10.1007/s10008-020-04709-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04709-9

Keywords

Navigation