Skip to main content
Log in

Aluminum electrodeposition from a non-aqueous electrolyte—a combined computational and experimental study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposition of aluminum (Al) from an organic non-aqueous electrolyte of ethylbenzene containing aluminum bromide is demonstrated. It is offered as a simple method for the preparation of Al coatings. This work employs distinct electrochemical techniques and explores the effects of the experimental parameters on the kinetics of the process and the quality of the final coatings. The process presented here enables deposition of pure and crystalline Al at room temperature and facilitates the production of uniform Al coatings on various metallic substrates. Morphological studies establish that the growth of Al deposits follows an island mode, and thus, the most noteworthy effect of the substrate over the morphology of the deposits originates from its impact over the nucleation stage, and the density of islands. This study is complemented by theoretical modeling for the adsorption of Al atoms at the different surfaces. Corrosion evaluation determines the dissolution mechanisms of each of the studied substrates in the examined electrolyte. These findings further corroborate the claim that this electrolyte enables the reversible electrodeposition of Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhao Y, VanderNoot TJ (1997) Review: Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts. Electrochim Acta 42(1):3–13

    Article  CAS  Google Scholar 

  2. Abbott AP, Harris RC, Hsieh Y-T, Ryder KS, Sun IW (2014) Aluminium electrodeposition under ambient conditions. Phys Chem Chem Phys 16(28):14675–14681. https://doi.org/10.1039/c4cp01508h

    Article  CAS  PubMed  Google Scholar 

  3. Bakkar A, Neubert V (2015) A new method for practical electrodeposition of aluminium from ionic liquids. Electrochem commun 51:113–116. https://doi.org/10.1016/j.elecom.2014.12.012

    Article  CAS  Google Scholar 

  4. Zhao Y, VanderNoot TJ (1997) Electrodeposition of aluminium from room temperature AlCl3-TMPAC molten salts. Electrochim Acta 42(11):1639–1643. https://doi.org/10.1016/S0013-4686(96)00271-X

    Article  CAS  Google Scholar 

  5. Peled E, Mitvaski A, Reger A, Gileadi E (1977) Electrochemical properties of the AlBr3 / MBr / ArH solvent system and polarography of metal ions in it. J Electroanal Chem 75(2):677–695

    Article  CAS  Google Scholar 

  6. Sheng LY, Yang F, Xi TF, Lai C, Ye HQ (2011) Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling. Compos Part B Eng 42(6):1468–1473. https://doi.org/10.1016/j.compositesb.2011.04.045

    Article  CAS  Google Scholar 

  7. Kim IK, Hong SI (2014) Mechanochemical joining in cold roll-cladding of tri-layered Cu/Al/Cu composite and the interface cracking behavior. Mater Des 57:625–631. https://doi.org/10.1016/j.matdes.2014.01.054

    Article  CAS  Google Scholar 

  8. Naseri M, Reihanian M, Borhani E (2016) Bonding behavior during cold roll-cladding of tri-layered Al/brass/Al composite. J Manuf Process 24:125–137. https://doi.org/10.1016/j.jmapro.2016.08.008

    Article  Google Scholar 

  9. Lehmkuhl H, Mehler K, Landau U (1990) The principles and techniques of electrolytic aluminum deposition and dissolution in organoaluminum electrolytes. In: Gerischer H, Tobias CW (eds) Advances in Electrochemical Science and Engineering. VCH, pp 163–226

  10. Abbott AP, Mckenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys 8(37):4265–4279. https://doi.org/10.1039/b607329h

    Article  CAS  PubMed  Google Scholar 

  11. Tsuda T, Stafford GR, Hussey CL (2017) Review—Electrochemical surface finishing and energy storage technology with room-temperature haloaluminate ionic liquids and mixtures. J Electrochem Soc 164(8):H5007–H5017. https://doi.org/10.1149/2.0021708jes

    Article  CAS  Google Scholar 

  12. Wade WH, Twellmeyer GO, Yntema LF (1940) The deposition potentials of metals from fused alkali chloride-aluminum chloride baths. J Electrochem Soc 78(1):77–90

    Article  Google Scholar 

  13. Fellner P, Chrenkova-Paucirova M, Matiasovsky K (1981) Electrolytic aluminum plating in molten salt mixtures based on AlCl3. Surf Technol 14(2):101–108

    Article  CAS  Google Scholar 

  14. Couch DE, Brenner A (1952) A hydride bath for the electrodeposition of aluminum. J Electrochem Soc 99(6):234–244

    Article  CAS  Google Scholar 

  15. Brenner A, Chase C, Couch DE (1953) Electrodeposition of aluminum from nonaqueous solutions. 1–2

  16. Connor JH, Brenner A (1956) Electrodeposition of metals from organic solutions II. Further studies on the electrodeposition of aluminum. J Electrochem Soc 103:657–663

    Article  CAS  Google Scholar 

  17. Ishibashi N, Yoshio M (1972) Electrodeposition of aluminium from the NBS type bath using tetrahydrofuran-benzene mixed solvent. Electrochim Acta 17(8):1343–1352. https://doi.org/10.1016/0013-4686(72)80080-X

    Article  CAS  Google Scholar 

  18. Yoshio M, Ishibashi N (1973) High-rate plating of aluminium from the bath containing aluminium chloride and lithium aluminium hydride in tetrahydrofuran. J Appl Electrochem 3(4):321–325. https://doi.org/10.1007/BF00613040

    Article  CAS  Google Scholar 

  19. Dotzer R, Hauschlidt H-G, Todt E (1977) Electroplating bath and method for the electrodeposition of bright aluminum coatings

  20. Birkle S, Stoger K (1983) Electrolyte for the electrodeposition of aluminum. 1–4

  21. Kautek W, Birkle S (1989) Aluminum-electrocrystallization from metal-organic electrolytes. Electrochim Acta 34(8):1213–1218. https://doi.org/10.1016/0013-4686(89)87160-9

    Article  Google Scholar 

  22. Peled E, Gileadi E (1976) The electrodeposition of aluminum from aromatic hydrocarbon. J Electrochem Soc 123(1):15–19. https://doi.org/10.1149/1.2132753

    Article  CAS  Google Scholar 

  23. Reger A, Peled E, Gileadi E (1976) Interfacial phenomena at solid aluminum electrodes in solutions of AlBr3/KBr in aromatic hydrocarbons. J Electrochem Soc 123(5):638–642. https://doi.org/10.1149/1.2132901

    Article  CAS  Google Scholar 

  24. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  25. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B - Condens Matter Mater Phys 59(3):1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  26. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B - Condens Matter Mater Phys 54(16):11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  27. Jürgen H (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 29:2044–2078. https://doi.org/10.1002/jcc

    Article  Google Scholar 

  28. Gunawardena G, Hills G, Montenegro I, Scharifker BR (1982) Electrochemical nucleation. Part I. General considerations. J Electroanal Chem 138:225–239. https://doi.org/10.1016/0022-0728(82)85080-8

    Article  CAS  Google Scholar 

  29. Scharifker BR, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889. https://doi.org/10.1016/0013-4686(83)85163-9

    Article  CAS  Google Scholar 

  30. Paunovic M, Schlesinger M (1998) Fundamentals of electrochemical deposition. Wiley, New Jersey.

  31. Abyaneh MY (1982) Calculation of overlap for nucleation and three-dimensional growth of centers. Electrochim Acta 27(9):1329–1334. https://doi.org/10.1016/0013-4686(82)80156-4

    Article  CAS  Google Scholar 

  32. Abyaneh MY (1995) Generalization of transient equations due to the growth of hemispheroids. J Electroanal Chem 387(1-2):29–34. https://doi.org/10.1016/0022-0728(94)03822-K

    Article  Google Scholar 

  33. Isaev VA, Baraboshkin AN (1994) Three-dimensional electrochemical phase formation. J Electroanal Chem 377(1-2):33–37. https://doi.org/10.1016/0022-0728(94)03450-8

    Article  CAS  Google Scholar 

  34. Isaev VA, Grishenkova OV, Zaykov YP (2018) On the theory of 3D multiple nucleation with kinetic controlled growth. J Electroanal Chem 818:265–269. https://doi.org/10.1016/j.jelechem.2018.04.051

    Article  CAS  Google Scholar 

  35. Lai Y, Liu F, Li J, Zhang Z, Liu Y (2010) Nucleation and growth of selenium electrodeposition onto tin oxide electrode. J Electroanal Chem 639(1-2):187–192. https://doi.org/10.1016/j.jelechem.2009.11.026

    Article  CAS  Google Scholar 

  36. Abbott AP, Barron JC, Frisch G, Gurman S, Ryder KS, Fernando Silva A (2011) Double layer effects on metal nucleation in deep eutectic solvents. Phys Chem Chem Phys 13(21):10224–10231. https://doi.org/10.1039/c0cp02244f

    Article  CAS  PubMed  Google Scholar 

  37. Miller MA, Wainright JS, Savinell RF (2017) Iron Electrodeposition in a Deep Eutectic Solvent for Flow Batteries. J Electrochem Soc 164(4):A796–A803. https://doi.org/10.1149/2.1141704jes

    Article  CAS  Google Scholar 

  38. Peled E, Brand M, Gileadi E (1981) Measurement of the viscosity and specific conductivity of an aluminum plating bath— the non-Stokesian mechanism of electrolytic conductivity. J Electrochem Soc 128(8):1697. https://doi.org/10.1149/1.2127713

    Article  CAS  Google Scholar 

  39. Reger A, Peled E, Gileadi E (1979) Mechanism of high conductivity in a medium of low dielectric constant. J Phys Chem 83(7):873–879. https://doi.org/10.1021/j100470a023

    Article  CAS  Google Scholar 

  40. Starosvetsky D, Sezin N, Ein-Eli Y (2010) Seedless copper electroplating on Ta from a “single” electrolytic bath. Electrochim Acta 55(5):1656–1663. https://doi.org/10.1016/j.electacta.2009.10.044

    Article  CAS  Google Scholar 

  41. Goodfellow Cambridge Limited (1995) Goodfellow Catalogue 1994/95: metals, alloys, compounds, ceramics, polymers, composites

  42. Parretta A, Jayaraj MK, Di Nocera A et al (1996) Electrical and optical properties of opper oxide films prepared by RF magnetron sputtering. Phys Status Solidi 155:399–404. https://doi.org/10.4028/www.scientific.net/AMR.194-196.2272

    Article  CAS  Google Scholar 

  43. Sriram S, Thayumanavan A (2013) Structural, optical and electrical properties of NiO thin films prepered by low cost spray pyrolysis technique. Int J Mater Sci Eng 1:118–121. https://doi.org/10.12720/ijmse.1.2.118-121

    Article  Google Scholar 

  44. Guo L, Searson PC (2010) On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochim Acta 55(13):4086–4091. https://doi.org/10.1016/j.electacta.2010.02.038

    Article  CAS  Google Scholar 

  45. Elam M, Gileadi E (1979) Cyclic Voltammetry in Solutions of aluminum bromide and KBr in aromatic hydrocarbons - surface processes. J Electrochem Soc 126(9):1474–1479. https://doi.org/10.1149/1.2116019

    Article  CAS  Google Scholar 

  46. Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, Nelson LJ, Hart GLW, Sanvito S, Buongiorno-Nardelli M, Mingo N, Levy O (2012) AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 58:227–235. https://doi.org/10.1016/j.commatsci.2012.02.002

    Article  CAS  Google Scholar 

  47. Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T, Persson KA, Ceder G (2011) A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci 50(8):2295–2310. https://doi.org/10.1016/j.commatsci.2011.02.023

    Article  CAS  Google Scholar 

  48. Delczeg L, Delczeg-Czirjak EK, Johansson B, Vitos L (2011) Density functional study of vacancies and surfaces in metals. J Phys Condens Matter 23(4):045006. https://doi.org/10.1088/0953-8984/23/4/045006

    Article  CAS  PubMed  Google Scholar 

  49. Patra A, Bates JE, Sun J, Perdew JP (2017) Properties of real metallic surfaces: effects of density functional semilocality and van der Waals nonlocality. Proc Natl Acad Sci U S A 114(44):E9188–E9196. https://doi.org/10.1073/pnas.1713320114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hinnemann B, Carter EA (2007) Adsorption of Al, O, Hf, Y, Pt, and S atoms on α-Al2O3(0001). J Phys Chem C 111(19):7105–7126. https://doi.org/10.1021/jp068869c

    Article  CAS  Google Scholar 

  51. Wang L, Zhao J (2009) Which is the lowest-energy structure of Al13 clusters: assessment of different exchange-correlation functionals in density functional theory. J Comput Theor Nanosci 6(2):449–453

    Article  CAS  Google Scholar 

  52. Jung J, Kim JC, Han YK (2005) Structure and electronic properties of Al13X (X=F, Cl, Br, and I) clusters. Phys Rev B - Condens Matter Mater Phys 72(15):1–5. https://doi.org/10.1103/PhysRevB.72.155439

    Article  CAS  Google Scholar 

  53. Han YK, Jung J (2004) Structure and stability of Al13I clusters. J Chem Phys 121(17):8500–8502. https://doi.org/10.1063/1.1803538

    Article  CAS  PubMed  Google Scholar 

  54. Gupta SS, Van Huis MA, Dijkstra M, Sluiter MHF (2016) Depth dependence of vacancy formation energy at (100), (110), and (111) Al surfaces: a first-principles study. Phys Rev B 93(8):085432. https://doi.org/10.1103/PhysRevB.93.085432

    Article  CAS  Google Scholar 

  55. Nie JL, Ao L, Zhao FA, Jiang M, Zu XT (2015) A first-principles study of bulk aluminum at high pressure. Can J Phys 93(8):825–829

    Article  CAS  Google Scholar 

  56. Aguado A, López JM (2009) Structures and stabilities of Aln+, Aln, and Aln- (n=13-34) clusters. J Chem Phys 130(6):064704. https://doi.org/10.1063/1.3075834

    Article  CAS  PubMed  Google Scholar 

  57. Ahlrichs R, Elliott SD (1999) Clusters of aluminium, a density functional study. Phys Chem Chem Phys 1(1):13–21. https://doi.org/10.1039/a807713d

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from Israel Council for Higher Education (CHE) and Israel Fuel Choice Initiative, within the framework of “Israel National Research Center for Electrochemical Propulsion” (INREP) and the Grand Technion Energy Program (GTEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yair Ein-Eli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yitzhack, N., Tereschuk, P., Sezin, N. et al. Aluminum electrodeposition from a non-aqueous electrolyte—a combined computational and experimental study. J Solid State Electrochem 24, 2833–2846 (2020). https://doi.org/10.1007/s10008-020-04626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04626-x

Navigation