Skip to main content

Advertisement

Log in

First-principles investigation of the structural stability and electronic properties of LiV1–xMxPO4F (M = Mn, Fe, Co, and Ni)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Density functional theory calculations corrected by on-site Coulomb interactions have been conducted to study the crystal structure and electronic property of the LiV1–xMxPO4F (M = Mn, Fe, Co, and Ni) electrode systems. The calculation results show that the substitution of V atoms in LiVPO4F by Fe-dopants resulted in the lowest formation energy, and the crystal structure is, therefore, most thermodynamically stable, while Co and Ni doping seems to be difficult due to their relatively higher formation energy than that of doping with Fe and Mn. Furthermore, Fe substitution can effectively suppress the volume change of the LiVPO4F materials during electrochemical delithiation, leading to improvement of the cycle performance of LiVPO4F electrode. The results of charge analysis predict that Fe substitution is able to donate extra electrons for charge compensation during the Li+ reversible extraction/insertion process. The calculation of energy band structure and density of states indicate that the Mn, Fe, Co, and Ni doping reduce the band gaps through variations of V-3d spin orbitals. However, only Fe doping introduced impurity level located at 0.75 eV above valence band in the forbidden band of LiVPO4F, providing a platform for electronic transition, which is helpful to enhance electronic conductivity of the LiVPO4F electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu S, Hu JQ, Hussain MB, Wu SQ, Yang Y, Zhu ZZ (2018) Structural stabilities and electrochemistry of Na2FeSiO4 polymorphs: first-principles calculations. J Solid State Electrochem 22(7):2237–2245

    Article  CAS  Google Scholar 

  2. Wang Y, Tang Y, Zhong B, Liu H, Zhong Y, Guo X (2014) Facile synthesis of Li3V2(Po4)3/C nano-flakes with high-rate performance as cathode material for Li-ion battery facile synthesis of Li3V2(Po4)3/C nano-flakes with high-rate performance as cathode material for Li-ion battery. J Solid State Electrochem 18(1):215–221

    Article  CAS  Google Scholar 

  3. Ghorbanzadeh M, Allahyari E, Riahifar R, Hadavi SMM (2017) Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for Li-ion battery. J Solid State Electrochem 22:1155–1163

    Article  Google Scholar 

  4. Ceder G, Aydinol MK, Kohan AF (1997) Application of first-principles calculations to the design of rechargeable Li-batteries. Comput Mater Sci 8(1–2):161–169

    Article  CAS  Google Scholar 

  5. Zhang T, Li D, Tao Z, Chen J (2013) Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Prog Nat Sci Mater Int 23(3):256–272

    Article  CAS  Google Scholar 

  6. Meng YS, Arroyo-De Dompablo ME (2013) Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc Chem Res 46(5):1171–1180

    Article  CAS  Google Scholar 

  7. Allen JL, Delp SA, Jow TR (2014) Electrolyte optimization of a substituted-LiCo1-xFexPO4 cathode. ECS Trans 61(27):63–68

    Article  CAS  Google Scholar 

  8. Barker J, Saidi MY, Swoyer JL (2004) A comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J Electrochem Soc 151(10):A1670–A1677

    Article  CAS  Google Scholar 

  9. Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. J Power Sources 146(1–2):516–520

    Article  CAS  Google Scholar 

  10. Huang H, Faulkner T, Barker J, Saidi MY (2009) Lithium metal phosphates, power and automotive applications. J Power Sources 189(1):748–751

    Article  CAS  Google Scholar 

  11. Bamine T, Boivin E, Boucher F, Messinger RJ, Salager E, Deschamps M, Masquelier C, Croguennec L, Ménétrier M, Carlier D (2017) Understanding local defects in Li-ion battery electrodes through combined DFT/NMR studies, application to LiVPO4F. J Phys Chem C 121:3219–3227

    Article  CAS  Google Scholar 

  12. Barker J, Saidi MY, Gover RKB, Burns P, Bryan A (2007) The effect of Al substitution on the lithium insertion properties of lithium vanadium fluorophosphate, LiVPO4F. J Power Sources 174(2):927–931

    Article  CAS  Google Scholar 

  13. Zhong S, Li F, Liu J, Li Y, Deng X (2009) Preparation and electrochemical studies of Y-doped LiVPO4F cathode materials for lithium-ion batteries. J Wuhan Univ Technol Mater Sci Ed 24(4):552–556

    Article  CAS  Google Scholar 

  14. Peng Z, Gan Z, Du K, Cao Y, Xie X, Wang Y, Li Y, Hu G (2018) Electrochemical performance of Co-doped LiVPO4F/C composite cathode material for lithium ion batteries prepared by modified solid state method. J Alloys Compd 730:261–269

    Article  CAS  Google Scholar 

  15. Zhong S, Yin Z, Wang Z, Chen Q (2007) Synthesis and electrochemical properties of Al-doped LiVPO4F cathode materials for lithium-ion batteries. Rare Met (Beijing, China) 26(5):445–449

    CAS  Google Scholar 

  16. Sun X, Xu Y, Chen G, Ding P, Zheng X (2014) Titanium doped LiVPO4F cathode for lithium ion batteries. Solid State Ionics 268:236–241

    Article  CAS  Google Scholar 

  17. Sun X, Xu Y, Jia M, Ding P, Liu Y, Chen K (2013) High performance LiV0.96Mn0.04PO4F/C cathodes for lithium-ion batteries. J Mater Chem A 1(7):2501–2507

    Article  CAS  Google Scholar 

  18. Huang ZD, Orikasa Y, Masese T, Ymmamoto K, Mori T, Minato T, Uchimoto Y (2013) A novel cationic-ordering fluoro-polyanionic cathode LiV0.5Fe0.5PO4F and its single phase Li+ insertion/extraction behavior. RSC Adv 3(45):22935–22939

    Article  CAS  Google Scholar 

  19. Mattsson AE, Schultz PA, Desjarlais MP, Mattsson TR, Leung K (2005) Designing meaningful density functional theory calculations in materials science-a primer. Model Numer Simul Mater Sci 13(1):R1–R31

    Article  CAS  Google Scholar 

  20. Satish R, Aravindan V, Ling WC, Madhavi S (2016) LiVPO4F: a new cathode for high-energy lithium ion capacitors. Chemistry Select 1(12):3316–3322

    CAS  Google Scholar 

  21. Wang J, Liu Z, Yan G, Li H, Peng W, Li X, Song L, Shih K (2016) Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: focus on interfacial stability. J Power Sources 329:553–557

    Article  CAS  Google Scholar 

  22. Ma R, Shu J, Hou L, Shui M, Shao L, Wang D, Ren Y (2013) Ex situ FTIR spectroscopy study of LiVPO4F as cathode material for lithium-ion batteries. Ionics 19(5):725–730

    Article  CAS  Google Scholar 

  23. Ellis BL, Ramesh TN, Davis LJM, Gillian RG, Linda FN (2011) Structure and electrochemistry of two-electron redox couples in lithium metal fluorophosphates based on the tavorite structure. Chem Mater 23:5138–5148

    Article  CAS  Google Scholar 

  24. Ramzan M, Lebègue S, Ahuja R (2010) Crystal and electronic structures of lithium fluorosulphate based materials for lithium-ion batteries. Phys Rev B 82(12):125101

    Google Scholar 

  25. Reddy MV, Subba Rao GV, Chowdari BVR (2010) Long-term cycling studies on 4 V-cathode, lithium vanadium fluorophosphates. J Power Sources 195(17):5768–5774

    Article  CAS  Google Scholar 

  26. Ateba Mba J, Masquelier C, Suard E, Croguennec L (2012) Synthesis and crystallographic study of homeotypic LiVPO4F and LiVPO4O. Chem Mater 24(6):1223–1234

    Article  CAS  Google Scholar 

  27. Lv X, Xu Z, Li J, Chen J, Liu Q (2016) Insights into stability, electronic properties, defect properties and Li ions migration of Na, Mg and Al-doped LiVPO4F for cathode materials of lithium ion batteries: a first-principles investigation. J Solid State Chem 239:228–236

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  29. Kresse G (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    CAS  Google Scholar 

  30. Xu Z, Rossmeisl J, Kitchin JR (2015) A linear response DFT+\r, U\r, study of trends in the oxygen evolution activity of transition metal rutile dioxides. J Phys Chem C 119(9):4827–4833

    CAS  Google Scholar 

  31. Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni. Electrochem Commun 6:1144–1148

    Article  CAS  Google Scholar 

  32. Lin Z, Zhao Y, Zhao Y (2009) Li- site and metal-site ion doping in phosphate-olivine LiCoPO4 by first-principles calculation. Chin Phys Lett 26(3):287–290

    Google Scholar 

  33. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28(5):899–908

    Article  CAS  Google Scholar 

  34. Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter 21(8):084204

    Article  CAS  Google Scholar 

  35. Shi S, Liu L, Ouyang C, Wang D, Wang Z, Chen L, Huang X (2003) Enhancement of electronic conductivity of LiFePO4, by Cr doping and its identification by first-principles calculations. Phys Rev B 68(19):195108

    Article  Google Scholar 

  36. Hinuma Y, Pizzi G, Kumagai Y, Oba F, Tanaka I (2016) Band structure diagram paths based on crystallography. Comput Mater Sci 128:140–184

    Article  Google Scholar 

  37. Liu ZJ, Huang XJ, Wang DS (2008) First-principle investigations of N doping in LiFePO4. Solid State Commun 147:505–509

    Article  CAS  Google Scholar 

  38. Xiao Y, Zhang FC, Han JI (2016) Electrical structures, magnetic polaron and lithium ion dynamics in three transition metal doped LiFe1 − xMxPO4 (M = Mn, Co and La) cathode material for Li ion batteries from density functional theory study solid state Ionics 294:73–81

  39. Svavarsson HG, Gudmundsson JT, Gislason HP (2003) Impurity band in lithium-diffused and annealed GaAs: conductivity and hall effect measurements. Phys Rev B 67(20):205213

    Google Scholar 

Download references

Funding

This work was supported by the Open Research Subject of Powder Metallurgy Engineering Technology Research Center of Sichuan Province, China (grant no. SC-FMYJ2017-03, SC-FMYJ2018-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanhua Chen or Zhengyuan Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Di, Y., Liu, E. et al. First-principles investigation of the structural stability and electronic properties of LiV1–xMxPO4F (M = Mn, Fe, Co, and Ni). J Solid State Electrochem 24, 1075–1084 (2020). https://doi.org/10.1007/s10008-020-04582-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04582-6

Keywords

Navigation