Skip to main content
Log in

Seed layer effect on morphological, structural, and optical properties of electrochemically grown ZnO nanowires over different SnO2:F/glass substrates

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Transparent conductive oxide electrodes and specifically SnO2:F/glass are widely employed substrates in the preparation of optoelectronic devices. This study deals with the surface effect of commercially SnO2:F/glass electrodes on the properties of ZnO nanowires grown onto them by using an electrochemical method. Four types of commercially SnO2:F/glass with sheet resistances in the range of 7–15 Ω cm−2 and roughness from 9 to 39 nm were used. The deposition process of ZnO nanowires was performed with zero, one, and two ZnO seed layers, respectively. The seed layer was grown from an ethanolic solution of zinc acetate as a Zn2+ precursor, and further, a thermal treatment was performed. The formation of the nanomaterial was carried out by using the potentiostatic method at − 1 V and until reaching a total charge of − 1.5 C at a temperature of 75 °C. Different densities of nanowires were obtained for each case, with diameters ranging from 30 to 400 nm. The SnO2:F/glass roughness affects the diameter and alignment of the ZnO nanowires. Measurements of diffusive spectra in the optical range, as well as the determination of polarization properties, show that the seed layer deposition is indispensable to obtain optimal optical quality. The findings here discussed constitute another critical factor to be considered in the synthesis of well-aligned nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sweeney SJ, Mukherjee J (2017) In: Kasap S, Capper P (eds.) Springer handbook of electronic and photonic materials, 2nd edn. Springer International Publishing, Cham

  2. Pauporté T (2017) In: Lira-Cantu M (ed) The future of semiconductors oxides in next-generation solar cells, 1st edn. Elsevier Inc., Amsterdam-Oxford-Cambridge

  3. Saraswat SK, Rodene DD, Gupta RB (2018) Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renew Sust Energ Rev 89:228–248

    CAS  Google Scholar 

  4. Jeong K, Deshmukh PR, Park J et al (2018) ZnO-TiO2 core–shell nanowires: a sustainable photoanode for enhanced photoelectrochemical water splitting. ACS Sustain Chem Eng 6:6518–6526

    CAS  Google Scholar 

  5. Liu F, Yang X, Qiao Z et al (2018) Highly transparent 3D NiO-Ni/Ag-nanowires/FTO micro-supercapacitor electrodes for fully transparent electronic device purpose. Electrochim Acta 260:281–289

    CAS  Google Scholar 

  6. Marimuthu T, Anandhan N, Thangamuthu R, Surya S (2017) Facile growth of ZnO nanowire arrays and nanoneedle arrays with flower structure on ZnO-TiO2 seed layer for DSSC applications. J Alloys Compd 693:1011–1019

    CAS  Google Scholar 

  7. Rout CS, Hari Krishna S, Vivekchand SRC et al (2006) Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chem Phys Lett 418:586–590

    CAS  Google Scholar 

  8. Kaur M, Kailasaganapathi S, Ramgir N et al (2017) Gas dependent sensing mechanism in ZnO nanobelt sensor. Appl Surf Sci 394:258–266

    CAS  Google Scholar 

  9. Huang ZL, Chen CM, Lin ZK, Yang SH (2017) Efficiency enhancement of regular-type perovskite solar cells based on Al-doped ZnO nanorods as electron transporting layers. Superlattice Microst 102:94–102

    CAS  Google Scholar 

  10. Dasgupta NP, Sun J, Liu C et al (2014) 25th anniversary article: semiconductor nanowires–synthesis, characterization, and applications. Adv Mater 26:2137–2183

    CAS  PubMed  Google Scholar 

  11. Tian ZR, Voigt JA, Liu J, McKenzie B, McDermott M, Rodriguez MA, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nat Mater 2(12):821–826

    CAS  PubMed  Google Scholar 

  12. Cho S, Jung S-H, Lee K-H (2008) Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J Phys Chem C 112:12769–12776

    CAS  Google Scholar 

  13. Govatsi K, Seferlis A, Neophytides SG, Yannopoulos SN (2018) Influence of the morphology of ZnO nanowires on the photoelectrochemical water splitting efficiency. Int J Hydrog Energy 43:4866–4879

    CAS  Google Scholar 

  14. Sarangi SN (2016) Controllable growth of ZnO nanorods via electrodeposition technique: towards UV photo-detection. J Phys D Appl Phys 49:355103

    Google Scholar 

  15. Ahn CH, Han WS, Kong BH, Cho HK (2009) Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior. Nanotechnology 20:6

    Google Scholar 

  16. Chang CM, Hon MH, Leu IC (2013) Effect of seed layer on the growth and the consequent gas sensing characteristics of ZnO nanorod arrays using aqueous chemical growth. J Sol-Gel Sci Technol 68:1–8

    CAS  Google Scholar 

  17. Kumar V, Singh N, Mehra RM et al (2013) Role of film thickness on the properties of ZnO thin films grown by sol-gel method. Thin Solid Films 539:161–165

    CAS  Google Scholar 

  18. Sarangi SN, Nozaki S, Sahu SN (2015) ZnO nanorod-based non-enzymatic optical glucose biosensor. J Biomed Nanotechnol 11:988–996

    CAS  PubMed  Google Scholar 

  19. Xu L, Chen Q, Xu D (2007) Hierarchical ZnO nanostructures obtained by electrodeposition. J Phys Chem C 111:11560–11565

    CAS  Google Scholar 

  20. Lupan O, Guérin VM, Tiginyanu IM et al (2010) Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells. J Photochem Photobiol A Chem 211:65–73

    CAS  Google Scholar 

  21. Lupan O, Pauporté T, Chow L et al (2010) Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl Surf Sci 256:1895–1907

    CAS  Google Scholar 

  22. Yi CH, Yasui I, Shigesato Y (1995) Oriented tin-doped indium oxide films on <001> preferred oriented polycrystalline ZnO films. Jpn J Appl Phys 34:1638–1642

    CAS  Google Scholar 

  23. Shinagawa T, Izaki M (2014) Morphological evolution of ZnO nanorod arrays induced by a pH-buffering effect during electrochemical deposition. RSC Adv 4:30999–31002

    CAS  Google Scholar 

  24. Pauporté T, Lincot D, Viana B, Pelĺ F (2006) Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition. Appl Phys Lett 89:233112

    Google Scholar 

  25. Lincot D (2010) Solution growth of functional zinc oxide films and nanostructures. MRS Bull 35:778–789

    CAS  Google Scholar 

  26. Pauporté T, Bataille G, Joulaud L, Vermersch FJ (2010) Well-aligned ZnO nanowire arrays prepared by seed-layer-free electrodeposition and their cassie-wenzel transition after hydrophobization. J Phys Chem C 114:194–202

    Google Scholar 

  27. Guo M, Yang CY, Zhang M et al (2008) Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays. Electrochim Acta 53:4633–4641

    CAS  Google Scholar 

  28. Tena-Zaera R, Elias J, Wang G, Lévy-Clément C (2007) Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O2 reduction. J Phys Chem C 111:16706–16711

    CAS  Google Scholar 

  29. Elias J, Tena-Zaera R, Lévy-Clément C (2008) Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J Electroanal Chem 621:171–177

    CAS  Google Scholar 

  30. Bojorge CD, Kent VR, Teliz E et al (2011) Zinc-oxide nanowires electrochemically grown onto sol-gel spin-coated seed layers. Phys Status Solidi Appl Mater Sci 208:1662–1669

    CAS  Google Scholar 

  31. Guerguerian G, Elhordoy F, Pereyra CJ et al (2011) ZnO nanorod/CdS nanocrystal core/shell-type heterostructures for solar cell applications. Nanotechnology 22:505401

    PubMed  Google Scholar 

  32. Bin LB, Philipose U, De Souza CF, Ruda HE (2011) Role of electro-deposition parameters on preparing tailored dimension vertically-aligned ZnO nanowires. J Electrochem Soc 158:282–285

    Google Scholar 

  33. Campo L, Navarrete-Astorga E, Pereyra CJ et al (2016) The effect of a sputtered Al-doped ZnO seed layer on the morphological, structural and optical properties of electrochemically grown ZnO nanorod arrays. J Electrochem Soc 163:D392–D400

    CAS  Google Scholar 

  34. Yoon YC, Park KS, Kim SD (2015) Effects of low preheating temperature for ZnO seed layer deposited by sol-gel spin coating on the structural properties of hydrothermal ZnO nanorods. Thin Solid Films 597:125–130

    CAS  Google Scholar 

  35. Pimentel A, Ferreira SH, Nunes D et al (2016) Microwave synthesized ZnO nanorod arrays for UV sensors: a seed layer annealing temperature study. Materials (Basel) 9(4):299

    Google Scholar 

  36. Cataño FA, Gomez H, Dalchiele EA, Marotti RE (2014) Morphological and structural control of electrodeposited ZnO thin films and its influence on the photocatalytic degradation of methyl orange dye. Int J Electrochem Sci 9:534–548

    Google Scholar 

  37. Goux A, Pauporté T, Chivot J, Lincot D (2005) Temperature effects on ZnO film electrodeposition. Electrochim Acta 50:2239–2248

    CAS  Google Scholar 

  38. Oekermann T (2009) In: Vayssieres L (ed) On solar hydrogen & Nanotechnology, John Wiley & Sons (Asia) Pte Ltd, Singapore

  39. Valente P, Seré A, Pereyra CJ et al (2019) Depolarizing optical effect by ZnO nanowire arrays. Phys E Low-Dimensional Syst Nanostructures 114:1386–9477

    Google Scholar 

  40. Noh KJ, Oh HJ, Kim BR, Jung SC, Kang W, Kim SJ (2012) Photoelectrochemical properties of Fe2 O3 supported on TiO2 -based thin films converted from self-assembled hydrogen titanate nanotube powders. J Nanomater. https://doi.org/10.1155/2012/475430

  41. Khayatian A, Asgari V, Ramazani A et al (2017) Diameter-controlled synthesis of ZnO nanorods on Fe-doped ZnO seed layer and enhanced photodetection performance. Mater Res Bull 94:77–84

    CAS  Google Scholar 

  42. Ismail AH, Abdullah AH, Sulaiman Y (2017) Physical and electrochemical properties of ZnO films fabricated from highly cathodic electrodeposition potentials. Superlattice Microst 103:171–179

    CAS  Google Scholar 

  43. Kumar M, Bhatt V, Abhyankar AC et al (2018) Modulation of structural properties of Sn doped ZnO for UV photoconductors. Sensors Actuators A Phys 270:118–126

    CAS  Google Scholar 

  44. Yu X, Yu X, Zhang J et al (2017) Facile boosting light-scattering of ZnO nanorods in broadband spectrum region. Opt Mater (Amst) 66:131–136

    CAS  Google Scholar 

  45. Strano V, Smecca E, Depauw V et al (2015) Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells. Appl Phys Lett:106. https://doi.org/10.1063/1.4905389

  46. Nowak RE, Vehse M, Sergeev O et al (2014) ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells. Sol Energy Mater Sol Cells 125:305–309

    CAS  Google Scholar 

  47. Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781. https://doi.org/10.1039/c0ee00743a

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by FONDECYT 1161614, FONDEQUIP EQM 150101, ANII FCE_1_2014_1_104739, PEDECIBA-Física, CSIC-UDELAR Uruguay grants, and CONICYT doctoral fellowship number 21160394.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrique A. Dalchiele or Rodrigo del Rio Quero.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Rodriguez, J., Pereyra, C.J., Valente, P. et al. Seed layer effect on morphological, structural, and optical properties of electrochemically grown ZnO nanowires over different SnO2:F/glass substrates. J Solid State Electrochem 24, 797–808 (2020). https://doi.org/10.1007/s10008-020-04527-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04527-z

Keywords

Navigation