Skip to main content
Log in

Quantitative detection of anodic oxygen evolution on solid state sintered silicon carbide under near ECM conditions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present work examined the gas evolution on a solid-state sintered silicon carbide material (EKasic®D) at high anodic potentials (up to 120 V vs Ag/AgCl). By using the amperometric detection as well as the method of oxygen quenching, the part of anodic evolved oxygen could be determined for 75–95% of the total amount of consumed charge. The minor part of the total charge is consumed by oxide film formation (passive range) or material dissolution (transpassive range).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schmalzried C, Schwetz KH (2010) Silicon carbide and boron carbide based hard materials. In: Chen RC (ed) Ceramic Science and Technology, vol 2010. Wiley VCH, pp 131–225

  2. Knoch H, Fundus M (1995) Sintered silicon carbide for slide bearings and seal rings. Sealing Technology 17:6–14

    Article  Google Scholar 

  3. Andrews A, Herrmann M, Sephton M, Machio C, Michaelis A (2007) Electrochemical corrosion of solid and liquid phase sintered silicon carbide in acidic and alkaline environments. J Eur Ceram Soc 27:2127–2135

    Article  CAS  Google Scholar 

  4. Schneider M, Safonow E, Junker N, Schubert N, Michaelis A (2017) Electrochemical machining of a solid-state sintered ceramic – a parameter study. Int J Refractory Metals & Hard Materials 68:19–23

    Article  CAS  Google Scholar 

  5. Samant AN, Dahotre NB (2009) Laser machining of structural ceramics—a review. J Eur Ceram Soc 29:969–993

    Article  CAS  Google Scholar 

  6. Srinivasu DS, Axinte DA, Shipway PH, Folkes J (2009) Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics. Intern. J. Machine Tools and Manufacture 49:1077–1088

    Article  Google Scholar 

  7. Datta M (1993) Anodic dissolution of metals at high rates. IBM J. Res. Dev. 37:207

    Article  CAS  Google Scholar 

  8. Schneider M, Lohrengel MM (2017) Electrochemical machining. In: Swider-Lyons K (ed) Breitkopf C. Springer-Handbook of Electrochemical Energy. Springer, pp 941–971

  9. Casady JB, Johnson RW (1996) Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electronics 39:1409–1422

    Article  Google Scholar 

  10. Schneider M, Schubert N, Michaelis A (2017) Anodic dissolution of solid-state sintered silicon carbide at high current densities. Mat Corr 68:645–650

    CAS  Google Scholar 

  11. Moehring A (2004) Entwicklung einer elektrochemischen Durchflusszelle zur Untersuchung des Elektrochemische Senkens (ECM, Electrochemical Machining). dissertation thesis, H-H-Universität Düsseldorf (in German).

  12. Lohrengel MM, Rosenkranz C, Klüppel I, Moehring A, Bettermann H, Van den Bossche B, Deconinck J (2004) A new microcell or microreactor for material surface investigations at large current densities. Electrochim Acta 49:2863–2870

    Article  CAS  Google Scholar 

  13. Schubert N, Schneider M, Michaelis A (2013) The mechanism of anodic dissolution of cobalt in neutral and alkaline electrolyte at high current density. Electrochim Acta 113:748–754

    Article  CAS  Google Scholar 

  14. Danneel HL (1897/98) Über den durch diffundierende Gase hervorgerufenen Reststrom. Z Elektrochemie 4:227–242

    Article  Google Scholar 

  15. Clark LC Jr, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    Article  CAS  Google Scholar 

  16. Clark LC Jr (1956) Electrochemical device for chemical analysis. Patent:US2913386

  17. Bard A J, Inzelt G, Scholz F (Eds) (2008) Electrochemical Dictionary. 1st ed., Springer-Verlag.

  18. Müller OH (1947) Polarographic study with a microelectrode past which an electrolyte is flowing. J Am Chem Soc 69:2992–2997

    Article  Google Scholar 

  19. Wolff C-M, Mottola HA (1977) Nonmembrane amperometric sensor for dissolved oxygen in flow- through systems. Anal Chem 49:2118–2121

    Article  CAS  Google Scholar 

  20. Fritz JS, Gjerde DT (2009) Ion Chromatography, 4th edn. Wiley-VCH, Hoboken

    Book  Google Scholar 

  21. Junker N, Schneider M (2017) An electrochemical approach to determine the oxygen production during ECM. Proc 13th International Symposium on Electrochemical Machining Technology INSECT, Dresden 75–80.

  22. Walther B (2008) Produktanalyse beim Electrochemical Machining (ECM) von Ti basierten Hartmetallen. Dissertation thesis, H-H-Universität Düsseldorf

  23. Rataj K, Hammer C, Walther B, Lohrengel MM (2013) Quantified oxygen evolution at microelectrodes. Electrochimica Acta 90:12–16

    Article  CAS  Google Scholar 

  24. Peterson JI, Fitzgerald RV, Buckhold K (1984) Fiber-optic probe for in vivo measurement of oxygen partial pressure. Analytical Chemistry 56:62–67

    Article  CAS  Google Scholar 

  25. Carraway ER, Demás JN, DeGraff BA, Bacon JR (1991) Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal. Chem. 63:337–342

    Article  CAS  Google Scholar 

  26. Vander Donckt E, Camerman B, Herne R, Vandeloise R (1996) Fibric-optic oxygen sensor based on luminiscence quenching of a Pt(II) complex embedded in polymer matrices. Sensors and Actuators B32:121–127

    Article  Google Scholar 

  27. Sydow U, Schneider M, Herrmann M, Kleebe H-J, Michaelis A (2010) Electrochemical corrosion of silicon carbide ceramics. Mat Corr 61:657–664

    CAS  Google Scholar 

  28. Sydow U, Sempf K, Herrmann M, Schneider M, Kleebe H-J, Michaelis A (2013) Electrochemical corrosion of liquid phase sintered silicon carbide ceramics. Mat Corr 64:218–224

    CAS  Google Scholar 

  29. Schneider M, Yezerska O, Lohrengel MM (2008) Anodic oxide formation on AA2024:electrochemical and microstructure investigation. Corr. Eng. Sci. Technol 43:304–312

    Article  CAS  Google Scholar 

  30. Lohrengel, M M, Untersuchungen der elektrochemischen Deckschichtkinetik mit Transientenmethoden, Habilitation thesis, H-H-Universität Düsseldorf 1999 (in German).

  31. Srivastava JK, Prasad M, Wagner JB (1985) Electrical conductivity of silicon dioxide thermally grown on silicon. J. Electrochem. Soc. 132:955–963

    Article  CAS  Google Scholar 

  32. Schatt W (Ed) (1983), Einführung in die Werkstoffwissenschaft, Dt. Verlag für Grundstoffindustrie Leipzig (in German).

  33. Hassel AW, Lohrengel MM, Schultze JW (1996) Ultradünne Aluminiumoxidschichten. Metalloberfläche 50:19–22 (in German)

    CAS  Google Scholar 

  34. Hasegawa H, Arimoto S, Nanjo J, Yamamoto H, Ohno H (1988) Anodic oxidation of hydrogenated amorphous silicon properties of oxide. J electrochem Soc 135:424–431

    Article  CAS  Google Scholar 

  35. Kim KJ, Eom J-H, Kim Y-W, Seo W-S (2015) Electric conductivity of dense, bulk silicon-oxycabide ceramics. J Eur Ceram Soc 35:1355–1360

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schneider.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, M., Šimůnková, L., Junker, N. et al. Quantitative detection of anodic oxygen evolution on solid state sintered silicon carbide under near ECM conditions. J Solid State Electrochem 24, 207–215 (2020). https://doi.org/10.1007/s10008-019-04479-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04479-z

Navigation