Skip to main content
Log in

Pd-doped perovskite-based SOFC anodes for biogas

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Highly performing perovskite-based anodes for methane mixtures-fueled solid oxide fuel cells (SOFC) are proposed. Catalytic activities of La0.6Sr0.4Fe1-xPdxO3-δ (LSFPd) with x = 0.05, 0.1 toward dry reforming of methane (DMR) and partial oxidation of methane (POM) reactions are investigated. The addition of (30 wt%) Ce0.85Gd0.15O2-δ (GDC) and of (30 wt%) Ni(5 wt%)-GDC to the perovskite compounds was evaluated to enhance both electrocatalytic and electrochemical properties. Electrolyte-supported cells based on La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) pellets and LSFPd perovskite oxides at both electrodes are fabricated and tested using CH4, CH4/Ar and CH4/CO2 mixtures in the 750–850 °C temperature range. Fuel cell tests using anodic mixtures such as LSFPd/GDC and LSFPd/Ni-GDC are also performed. A discussion based on the comparison between catalytic and electrochemical results and on the possible reforming and/or oxidation reactions taking place at the anode is detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gorte RJ, Vohs JM (2009) Nanostructured anodes for solid oxide fuel cells. Curr Opin Colloid Interface Sci 14(4):236–244

    Article  CAS  Google Scholar 

  2. McIntosh S, Gorte RJ (2004) Direct Hydrocarbon Solid Oxide Fuel Cells. Chem Rev 104(10):4845–4866

    Article  CAS  Google Scholar 

  3. Wang W, Qu J, Julião PSB, Shao Z (2019) Recent advances in the development of anode materials for solid oxide fuel cells utilizing liquid oxygenated hydrocarbon fuels: a mini review. Energy Technology 7(1):33–44

    Article  CAS  Google Scholar 

  4. Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72:141–337

    Article  CAS  Google Scholar 

  5. Nikooyeh K, Clemmer R, Alzate-Restrepo V, Hill JM (2008) Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane. Appl Catal A Gen 347(1):106–111

    Article  CAS  Google Scholar 

  6. Matsuzaki Y, Yasuda I (2000) The poisoning effect of sulfur-containing impurity gas on a SOFC anode: part I. dependence on temperature, time, and impurity concentration. Solid State Ionics 132(3):261–269

    Article  CAS  Google Scholar 

  7. Faes A, Hessler-Wyser A, Zryd A, Van Herle J (2012) A review of RedOx cycling of solid oxide fuel cells anode. Membranes (Basel) 2(3):585–664

    Article  CAS  Google Scholar 

  8. Tao S, Irvine JTS (2004) Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Chem Rec 4(2):83–95

    Article  CAS  Google Scholar 

  9. Marina OA, Canfield NL, Stevenson JW (2002) Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics 149(1):21–28

    Article  CAS  Google Scholar 

  10. Liu J, Madsen BD, Ji Z, Barnett SA (2002) A Fuel-Flexible Ceramic-Based Anode for Solid Oxide Fuel Cells. Electrochem Solid-State Lett 5(6):A122

    Article  CAS  Google Scholar 

  11. Shin TH, Okamoto Y, Ida S, Ishihara T (2012) Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells. Chem Eur J 18(37):11695–11702

    Article  CAS  Google Scholar 

  12. Zheng Y, Zhang C, Ran R, Cai R, Shao Z, Farrusseng D (2009) A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-δ perovskite oxide as both the anode and cathode. Acta Mater 57(4):1165–1175

    Article  CAS  Google Scholar 

  13. Zurlo F, Natali Sora I, Felice V, Luisetto I, D'Ottavi C, Licoccia S, Di Bartolomeo E (2016) Copper-doped lanthanum ferrites for symmetric SOFCs. Acta Mater 112:77–83

    Article  CAS  Google Scholar 

  14. Marcucci A, Zurlo F, Sora IN, Placidi E, Casciardi S, Licoccia S, Di Bartolomeo E (2019) A redox stable Pd-doped perovskite for SOFC applications. J Mater Chem A. https://doi.org/10.1039/C8TA10645B

    Article  CAS  Google Scholar 

  15. Onn TM, Monai M, Dai S, Fonda E, Montini T, Pan X, Graham GW, Fornasiero P, Gorte RJ (2018) Smart Pd catalyst with improved thermal stability supported on high-surface-area LaFeO3 prepared by atomic layer deposition. J Am Chem Soc 140(14):4841–4848

    Article  CAS  Google Scholar 

  16. Marcucci A, Zurlo F, Sora IN, Luisetto I, Licoccia S, Bartolomeo ED (2019) Pd-doped lanthanum ferrites for symmetric solid oxide fuel cells (SSOFCs). Materialia:100460

  17. Schwartz WR, Pfefferle LD (2012) Combustion of methane over palladium-based catalysts: support interactions. J Phys Chem C 116(15):8571–8578

    Article  CAS  Google Scholar 

  18. Gür TM (2016) Comprehensive review of methane conversion in solid oxide fuel cells: prospects for efficient electricity generation from natural gas. Prog Energy Combust Sci 54:1–64

    Article  Google Scholar 

  19. Cargnello M, Fornasiero P, Gorte RJ (2012) Opportunities for tailoring catalytic properties through metal-support interactions. Catal Lett 142(9):1043–1048

    Article  CAS  Google Scholar 

  20. Luisetto I, Sarno C, De Felicis D, Basoli F, Battocchio C, Tuti S, Licoccia S, Di Bartolomeo E (2017) Ni supported on γ-Al2O3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors. Fuel Process Technol 158:130–140

    Article  CAS  Google Scholar 

  21. Otsuka K, Ushiyama T, Yamanaka I (1993) Partial oxidation of methane using the redox of cerium oxide. Chem Lett 22(9):1517–1520

    Article  Google Scholar 

  22. Luisetto I, Tuti S, Romano C, Boaro M, Di Bartolomeo E, Kesavan JK, Kumar SS, Selvakumar K (2019) Dry reforming of methane over Ni supported on doped CeO2: new insight on the role of dopants for CO2 activation. Journal of CO2 Utilization 30:63–78

    Article  CAS  Google Scholar 

  23. Lo Faro M, Reis RM, Saglietti GGA, Oliveira VL, Zignani SC, Trocino S, Maisano S, Ticianelli EA, Hodnik N, Ruiz-Zepeda F, Aricò AS (2018) Solid oxide fuel cells fed with dry ethanol: the effect of a perovskite protective anodic layer containing dispersed Ni-alloy @ FeOx core-shell nanoparticles. Appl Catal B Environ 220:98–110

    Article  CAS  Google Scholar 

  24. Sarno C, Luisetto I, Zurlo F, Licoccia S, Di Bartolomeo E (2018) Lanthanum chromite based composite anodes for dry reforming of methane. Int J Hydrog Energy 43(31):14742–14750

    Article  CAS  Google Scholar 

  25. Ma Z, Perreault P, Pelegrin DC, Boffito DC, Patience GS (2020) Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2 FeCralloy catalysts. Chem Eng J 380:122470

    Article  CAS  Google Scholar 

  26. Tao S, Irvine JT (2004) Catalytic properties of the perovskite oxide La0. 75Sr0. 25Cr0. 5Fe0. 5O3-δ in relation to its potential as a solid oxide fuel cell anode material. Chem Mater 16(21):4116–4121

    Article  CAS  Google Scholar 

  27. Yang G, Su C, Chen Y, Tadé MO, Shao Z (2014) Nano La 0.6 Ca 0.4 Fe 0.8 Ni 0.2 O 3− δ decorated porous doped ceria as a novel cobalt-free electrode for “symmetrical” solid oxide fuel cells. J Mater Chem A 2(45):19526–19535

    Article  CAS  Google Scholar 

  28. Laosiripojana N, Assabumrungrat S (2005) Catalytic dry reforming of methane over high surface area ceria. Appl Catal B Environ 60(1–2):107–116

    Article  CAS  Google Scholar 

  29. Chang H, Chen H, Shao Z, Shi J, Bai J, Li S-D (2016) In situ fabrication of (Sr, La) FeO 4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode. J Mater Chem A 4(36):13997–14007

    Article  CAS  Google Scholar 

  30. Mirzababaei J, Chuang S (2014) La0. 6Sr0. 4Co0. 2Fe0. 8O3 perovskite: a stable anode catalyst for direct methane solid oxide fuel cells. Catalysts 4(2):146–161

    Article  Google Scholar 

  31. Tao S, Irvine JT, Plint SM (2006) Methane oxidation at redox stable fuel cell electrode La0. 75Sr0. 25Cr0. 5Mn0. 5O3-δ. J Phys Chem B 110(43):21771–21776

    Article  CAS  Google Scholar 

  32. Kambolis A, Matralis H, Trovarelli A, Papadopoulou C (2010) Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Appl Catal A Gen 377(1):16–26

    Article  CAS  Google Scholar 

  33. C-j L, Ye J, Jiang J, Pan Y (2011) Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 3(3):529–541

    Article  Google Scholar 

  34. Sakai N, Horita T, Yamaji K, Brito ME, Yokokawa H, Kawakami A, Matsuoka S, Watanabe N, Ueno A (2006) Interface stability among solid oxide fuel cell materials with perovskite structures. J Electrochem Soc 153(3):A621–A625

    Article  CAS  Google Scholar 

  35. Zurlo F, Di Bartolomeo E, D'Epifanio A, Felice V, Sora IN, Tortora L, Licoccia S (2014) La0. 8Sr0. 2Fe0. 8Cu0. 2O3− δ as “cobalt-free” cathode for La0. 8Sr0. 2Ga0. 8Mg0. 2O3− δ electrolyte. J Power Sources 271:187–194

    Article  CAS  Google Scholar 

  36. Buccheri MA, Singh A, Hill JM (2011) Anode-versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane. J Power Sources 196(3):968–976

    Article  CAS  Google Scholar 

  37. Simwonis D, Tietz F, Stöver D (2000) Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ionics 132(3):241–251

    Article  CAS  Google Scholar 

  38. Kawada T, Sakai N, Yokokawa H, Dokiya M, Mori M, Iwata T (1990) Characteristics of slurry-coated nickel zirconia cermet anodes for solid oxide fuel cells. J Electrochem Soc 137(10):3042–3047

    Article  CAS  Google Scholar 

  39. McCarty JG, Malukhin G, Poojary DM, Datye AK, Xu Q (2005) Thermal coarsening of supported palladium combustion catalysts. J Phys Chem B 109(6):2387–2391

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Italian Ministry for Education, University and Research MiUR (PRIN- 2017-Prot.2017FCFYHK_004). The authors acknowledge the SPARC (Scheme for Promotion of Academic and Research Collaboration) of Ministry of Human Resource Development of Government of India (Proposal #1106). The authors thank Sig. Cadia D’Ottavi for the technical support and Dr. Costantino Del Gaudio (E. Amaldi Foundation, Rome, Italy; Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, Rome, Italy) for Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Zurlo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcucci, A., Luisetto, I., Zurlo, F. et al. Pd-doped perovskite-based SOFC anodes for biogas. J Solid State Electrochem 24, 93–100 (2020). https://doi.org/10.1007/s10008-019-04473-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04473-5

Keywords

Navigation