Skip to main content
Log in

Oxygen reduction reaction mechanism and kinetics on M-NxCy and M@N-C active sites present in model M-N-C catalysts under alkaline and acidic conditions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

M-N-C electrocatalysts (where M is Fe or Co) have been investigated for mitigating the dependence on noble metals when catalyzing the oxygen reduction reaction (ORR) for fuel cell technologies in acidic or alkaline conditions. Rotating disk and rotating ring-disk electrode measurements for Fe-N-C and Co-N-C catalysts demonstrate promising performances and stability for the ORR, while the activity of main suspected active sites (M-NxCy and M@N-C) has been discussed on the basis of the known physical-chemical properties of the catalysts in acid and alkaline media. Thereupon, it is observed that atomically dispersed Fe-NxCy sites reach the highest ORR activity in acid media when amplified by an adequate energy binding between the metallic center and the oxygenated reaction intermediates. In contrast, Fe@N-C core-shell sites reach a maximum ORR mass activity in alkaline media through a synergistic effect involving catalyst particles with metallic iron in the core and nitrogen-doped carbon in the shell.

.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shao M, Chang Q, Dodelet J-P, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116(6):3594–3657

    Article  CAS  PubMed  Google Scholar 

  2. Lopes T, Kucernak A, Malko D, Ticianelli EA (2016) Mechanistic insights into the oxygen reduction reaction on metal–N–C electrocatalysts under fuel cell conditions. ChemElectroChem 3:1580–1590

    Article  CAS  Google Scholar 

  3. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35

    Article  CAS  Google Scholar 

  4. Serov A, Zenyuk IV, Arges CG, Chatenet M (2018) Hot topics in alkaline exchange membrane fuel cells. J Power Sources 375:149–157

    Article  CAS  Google Scholar 

  5. Li J, Alsudairi A, Ma ZF, Mukerjee S, Jia Q (2017) Asymmetric volcano trend in oxygen reduction activity of Pt and non-Pt catalysts: in situ identification of the site-blocking effect. J Am Chem Soc 139(4):1384–1387

    Article  CAS  PubMed  Google Scholar 

  6. Strateg Anal Inc. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications : 2013 Update (2013) US Department of Energy, Washington. https://www.energy.gov/sites/prod/files/2014/11/f19/fcto_sa_2013_pemfc_transportation_cost_analysis.pdf .

  7. Li J, Ghoshal S, Liang W et al (2016) Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ Sci 9:2418–2432

    Article  CAS  Google Scholar 

  8. do Rêgo UA, Lopes T, Bott-Neto JL et al (2019) Non-noble Fe-Nx/C electrocatalysts on tungsten carbides/N-doped carbons for the oxygen reduction reaction. Electrocatalysis 10:134–148

    Article  CAS  Google Scholar 

  9. do Rêgo UA, Lopes T, Bott-Neto JL et al (2018) Oxygen reduction electrocatalysis on transition metal-nitrogen modified tungsten carbide nanomaterials. J Electroanal Chem 810:222–231

    Article  CAS  Google Scholar 

  10. Zhong G, Wang H, Yu H, Peng F (2015) Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. J Power Sources 286:495–503

    Article  CAS  Google Scholar 

  11. Brocato S, Serov A, Atanassov P (2013) pH dependence of catalytic activity for ORR of the non-PGM catalyst derived from heat-treated Fe-phenanthroline. Electrochim Acta 87:361–365

    Article  CAS  Google Scholar 

  12. Meng H, Jaouen F, Proietti E et al (2009) pH-effect on oxygen reduction activity of Fe-based electro-catalysts. Electrochem Commun 11:1986–1989

    Article  CAS  Google Scholar 

  13. Elumeeva K, Ren J, Antonietti M, Fellinger TP (2015) High surface iron/cobalt-containing nitrogen-doped carbon aerogels as non-precious advanced electrocatalysts for oxygen reduction. ChemElectroChem 2:584–591

    Article  CAS  Google Scholar 

  14. Rojas-Carbonell S, Artyushkova K, Serov A et al (2018) Effect of pH on the activity of platinum group metal-free catalysts in oxygen reduction reaction. ACS Catal 8:3041–3053

    Article  CAS  Google Scholar 

  15. Ge X, Sumboja A, Wuu D et al (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5:4643–4667

    Article  CAS  Google Scholar 

  16. Ramaswamy N, Mukerjee S (2011) Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J Phys Chem C 115:18015–18026

    Article  CAS  Google Scholar 

  17. Ramaswamy N, Tylus U, Jia Q, Mukerjee S (2013) Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J Am Chem Soc 135(41):15443–15449

    Article  CAS  PubMed  Google Scholar 

  18. Jia Q, Ramaswamy N, Hafiz H, Tylus U, Strickland K, Wu G, Barbiellini B, Bansil A, Holby EF, Zelenay P, Mukerjee S (2015) Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9(12):12496–12505

    Article  CAS  PubMed  Google Scholar 

  19. Zhong L, Frandsen C, Mørup S et al (2018) 57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction. Appl Catal B Environ 221:406–412

    Article  CAS  Google Scholar 

  20. Singh SK, Takeyasu K, Nakamura J (2018) Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv Mater 1804297:1–17

    Google Scholar 

  21. Zagal JH, Koper MTM (2016) Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew Chem Int Ed 55:14510–14521

    Article  CAS  Google Scholar 

  22. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(80):443–447

    Article  CAS  PubMed  Google Scholar 

  23. Chen Z, Dodelet JP, Zhang J (eds) (2014) Non-noble metal fuel cell catalysts. Wiley, New York

    Google Scholar 

  24. Ranjbar-Sahraie N, Zitolo A, Fonda E et al (2017) Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat Commun 8:1–10

    Article  CAS  Google Scholar 

  25. Subramanian P, Mohan R, Schechter A (2017) Unraveling the oxygen-reduction sites in graphitic-carbon Co–N–C-type electrocatalysts prepared by single-precursor pyrolysis. ChemCatChem 9:1969–1978

    Article  CAS  Google Scholar 

  26. Perkas N, Schechter A, Gedanken A et al (2017) Electrochemical oxygen reduction activity of metal embedded nitrogen doped carbon nanostructures derived from pyrolysis of nitrogen-rich guanidinium salt. J Electrochem Soc 164:F781–F789

    Article  CAS  Google Scholar 

  27. Dodelet JP, Chenitz R, Yang L, Lefèvre M (2014) A new catalytic site for the electroreduction of oxygen? ChemCatChem 6:1866–1867

    Article  CAS  Google Scholar 

  28. Strickland K, Miner E, Jia Q et al (2015) Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat Commun 6:1–8

    Article  CAS  Google Scholar 

  29. Varnell JA, Tse ECM, Schulz CE et al (2016) Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat Commun 7:1–9

    Article  CAS  Google Scholar 

  30. Kumar K, Gairola P, Lions M, Ranjbar-Sahraie N et al (2018) Physical and chemical considerations for improving catalytic activity and stability of non-precious-metal oxygen reduction reaction catalysts. ACS Catal 8:11264–11276

  31. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145

    Article  CAS  Google Scholar 

  32. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(Pt 4):537–541

    Article  CAS  PubMed  Google Scholar 

  33. Zitolo A, Goellner V, Armel V, Sougrati MT, Mineva T, Stievano L, Fonda E, Jaouen F (2015) Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater 14(9):937–942

    Article  CAS  PubMed  Google Scholar 

  34. Yuan K, Sfaelou S, Qiu M et al (2018) Synergetic contribution of boron and Fe-Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett 3:252–260

    Article  CAS  Google Scholar 

  35. Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507

    Article  CAS  Google Scholar 

  36. Cowling RD, Riddiford AC (1969) The anodic behaviour of cobalt in alkaline solutions. Electrochim Acta 14:981–989

    Article  CAS  Google Scholar 

  37. Favaro M, Yang J, Nappini S, Magnano E, Toma FM, Crumlin EJ, Yano J, Sharp ID (2017) Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy. J Am Chem Soc 139(26):8960–8970

    Article  CAS  PubMed  Google Scholar 

  38. Zúñiga C, Candia-Onfray C, Venegas R et al (2019) Elucidating the mechanism of the oxygen reduction reaction for pyrolyzed Fe-N-C catalysts in basic media. Electrochem Commun 102:78–82

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  40. Ramaswamy N, Mukerjee S (2012) Fundamental mechanistic understanding of zlectrocatalysis of oxygen reduction on Pt and non-Pt surfaces: acid versus alkaline media. Adv Phys Chem 2012:1–17

    Article  CAS  Google Scholar 

  41. Tylus U, Jia Q, Strickland K et al (2014) Elucidating oxygen reduction active sites in pyrolyzed metal-nitrogen coordinated non-precious-metal electrocatalyst systems. J Phys Chem C 118:8999–9008

    Article  CAS  Google Scholar 

  42. Pérez-Rodríguez S, Torres D, Lázaro MJ (2018) Effect of oxygen and structural properties on the electrical conductivity of powders of nanostructured carbon materials. Powder Technol 340:380–388

    Article  CAS  Google Scholar 

  43. Deng D, Yu L, Chen X et al (2013) Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem Int Ed 52:371–375

    Article  CAS  Google Scholar 

  44. Zhu J, Xiao M, Liu C et al (2015) Growth mechanism and active site probing of Fe3C@N-doped carbon nanotubes/C catalysts: guidance for building highly efficient oxygen reduction electrocatalysts. J Mater Chem A 3:21451–21459

    Article  CAS  Google Scholar 

  45. Watanabe M (1991) Design of alloy electrocatalysts for CO2 reduction. J Electrochem Soc 138:3382

    Article  CAS  Google Scholar 

  46. Hu Y, Jensen JO, Zhang W et al (2014) Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew Chem Int Ed 53:3675–3679

    Article  CAS  Google Scholar 

  47. Anderson AB, Sidik RA (2004) Oxygen electroreduction on FeII and FeIII coordinated to N4 chelates. Reversible potentials for the intermediate steps from quantum theory. J Phys Chem B 108:5031–5035

    Article  CAS  Google Scholar 

  48. Yi Y, Weinberg G, Prenzel M et al (2017) Electrochemical corrosion of a glassy carbon electrode. Catal Today 295:32–40

    Article  CAS  Google Scholar 

  49. Freitas KS, Concha BM, Ticianelli EA, Chatenet M (2011) Mass transport effects in the borohydride oxidation reaction - influence of the residence time on the reaction onset and faradaic efficiency. Catal Today 170:110–119

    Article  CAS  Google Scholar 

  50. Schneider A, Colmenares L, Seidel YE, Jusys Z, Wickman B, Kasemo B, Behm RJ (2008) Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Phys Chem Chem Phys 10(14):1931–1943

    Article  CAS  PubMed  Google Scholar 

  51. Serov A, Artyushkova K, Andersen NI et al (2015) Original mechanochemical synthesis of non-platinum group metals oxygen reduction reaction catalysts assisted by sacrificial support method. Electrochim Acta 179:154–160

    Article  CAS  Google Scholar 

  52. Goellner V, Armel V, Zitolo A et al (2015) Degradation by hydrogen peroxide of metal-nitrogen-carbon catalysts for oxygen reduction. J Electrochem Soc 162:H403–H414

    Article  CAS  Google Scholar 

  53. Osmieri L, Monteverde Videla AHA, Armandi M, Specchia S (2016) Influence of different transition metals on the properties of Me–N–C (Me = Fe, Co, Cu, Zn) catalysts synthesized using SBA-15 as tubular nano-silica reactor for oxygen reduction reaction. Int J Hydrog Energy 41:22570–22588

    Article  CAS  Google Scholar 

  54. Osmieri L, Monteverde Videla AHA, Ocón P, Specchia S (2017) Kinetics of oxygen electroreduction on Me-N-C (Me = Fe, Co, Cu) catalysts in acidic medium: insights on the effect of the transition metal. J Phys Chem C 121:17796–17817

    Article  CAS  Google Scholar 

  55. Chen R, Li H, Chu D, Wang G (2009) Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J Phys Chem C 113:20689–20697

    Article  CAS  Google Scholar 

  56. Goenaga GA, Roy AL, Cantillo NM et al (2018) A family of platinum group metal-free catalysts for oxygen reduction in alkaline media. J Power Sources 395:148–157

    Article  CAS  Google Scholar 

  57. Chlistunoff J (2011) RRDE and voltammetric study of ORR on pyrolyzed Fe/polyaniline catalyst. On the origins of variable Tafel slopes. J Phys Chem C 115:6496–6507

    Article  CAS  Google Scholar 

  58. Santori PG, Speck FD, Li J et al (2019) Effect of pyrolysis atmosphere and electrolyte pH on the oxygen reduction activity, stability and spectroscopic signature of FeNx moieties in Fe-N-C catalysts. J Electrochem Soc 166:F3311–F3320

    Article  CAS  Google Scholar 

  59. Lee JS, Park GS, Kim ST et al (2013) A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped Ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam. Angew Chem Int Ed 52:1026–1030

    Article  CAS  Google Scholar 

  60. Kim JH, Sa YJ, Jeong HY, Joo SH (2017) Roles of Fe−Nx and Fe−Fe3C@C species in Fe−N/C electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces 9(11):9567–9575

    Article  CAS  PubMed  Google Scholar 

  61. Gokhale R, Chen Y, Serov A et al (2016) Direct synthesis of platinum group metal-free Fe-N-C catalyst for oxygen reduction reaction in alkaline media. Electrochem Commun 72:140–143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Synchrotron SOLEIL (Gif-sur Yvette, France) is acknowledged for provision of synchrotron radiation facilities at beamline SAMBA (Proposal No. 20171318). We also acknowledge Qingying Jia (Northeastern University, Boston, USA) for providing the EXAFS spectrum of Fe3C.

Funding

This study was financially supported by the French National Research Agency through the CAT2CAT and ANIMA projects, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil (process number: 1614344), CAPES/COFECUB program (process numbers: 88887-187755/2018-00 and Ph-C 914/18), and the São Paulo State Research Foundation (FAPESP – process number: 2013/16930-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frédéric Jaouen or Frédéric Maillard.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Professor José H. Zagal in celebration of his 70th birthday and his inspiring work on the reactivity of metal-macrocycles for O2 electro-reduction and how this can apply to pyrolyzed Metal-N-C catalysts

Electronic supplementary material

ESM 1

(DOCX 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sgarbi, R., Kumar, K., Jaouen, F. et al. Oxygen reduction reaction mechanism and kinetics on M-NxCy and M@N-C active sites present in model M-N-C catalysts under alkaline and acidic conditions. J Solid State Electrochem 25, 45–56 (2021). https://doi.org/10.1007/s10008-019-04436-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04436-w

Keywords

Navigation