Skip to main content

Advertisement

Log in

Nano-dimensional iron tungstate for super high energy density symmetric supercapacitor with redox electrolyte

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In present work, we have developed 2.0 V symmetric supercapacitor with rationally prepared iron tungstate (FeWO4) nanoparticles as electrodes and redox-active electrolyte. It is revealed that the electrochemical performances of FeWO4-system were significantly improved due to the addition of potassium iodide (KI) redox additive in conventional KOH electrolyte in terms of the specific capacitance and energy density. Notably, FeWO4-based symmetric cell with KI-additive shown two-fold enhancement in specific energy (113 Wh/kg) compared with the cell with pristine KOH electrolyte (41.62 Wh/kg). Such an excellent enhancement is attributed to the improvement in the stability of existing KOH electrolyte by KI which influences the strength of OH bond in aqueous media and prevents the breakdown of electrolyte without adversely affecting the redox behavior and on contrary supporting the interactions at the higher potential to produce better results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P (2015) Chem Soc Rev 44(7):1777–1790

    Article  CAS  PubMed  Google Scholar 

  2. Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P (2018) Chem Soc Rev 47(6):2065–2129

    CAS  PubMed  Google Scholar 

  3. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) J Phys Chem C 113(30):13103–13107

    Article  CAS  Google Scholar 

  4. Yuan A, Zhang Q (2006) Electrochem Commun 8(7):1173–1178

    Article  CAS  Google Scholar 

  5. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690

    Article  CAS  PubMed  Google Scholar 

  6. Lu X, Wang G, Zhai T, Yu M, Gan G, Tong Y, Li Y (2012) Nano Lett 12:1690

    Article  CAS  PubMed  Google Scholar 

  7. Tamboli MS, Dubal DP, Patil SS, Shaikh AS, Deonikar VG, Kulkarni MV, Maldar NN, Asiri AM, Gomez-Romero P, Kale BB, Patil DR (2012) Chem Eng J 307:300–310

    Article  Google Scholar 

  8. Qu Q, Zhang P, Wang B, Chen Y, Tian S, Wu Y, Holze R (2009) J Phys Chem C 113:14020

    Article  CAS  Google Scholar 

  9. Justin P, Meher SK, Rao GR (2010) J Phys Chem C 114:5203

    Article  CAS  Google Scholar 

  10. Senthil Kumar B, Vijaya Sankar K, Kalaiselvan R, Danielle M, Manickam M (2013) RSC Advances 3:352

    Article  CAS  Google Scholar 

  11. Perera SD, Patel B, Bonso J, Grunewald M, Ferraris JP, Balkus KJ (2011) ACS Appl Mater Interfaces 3:4512

    Article  CAS  PubMed  Google Scholar 

  12. Patil SS, Dubal DP, Tamboli MS, Ambekar JD, Kolekar SS, Gomez-Romero P, Kale BB, Patil DR (2016) J Mater Chem A 20:7580–7584

    Article  Google Scholar 

  13. Zhu M, Wang Y, Meng D, Qin X, Diao G (2012) J Phys Chem C 116:16276

    Article  CAS  Google Scholar 

  14. Kim M, Yoo J, Kim J (2017) Dalton Trans 46(20):6588–6600

    Article  CAS  PubMed  Google Scholar 

  15. Dubal DP, Suarez-Guevara J, Tonti D, Enciso E, Gomez-Romero P (2015) J Mater Chem A 3(46):23483–23492

    Article  CAS  Google Scholar 

  16. Rao S, Ramadoss A, Nithiyanantham U, Anantharaj S, Kundu S (2015) Inorg Chem 54:3851–3863

    Article  Google Scholar 

  17. Bretesché NG, Crosnier O, Payen C, Favier F, Brousse T (2015) Electrochem Commun 57:61–64

    Article  Google Scholar 

  18. Naderia HR, Sobhani-Nasabb A, Rahimi-Nasrabadic M, Ganjali MR (2017) Appl Surf Sci 423:1025–1034

    Article  Google Scholar 

  19. Wang W, Hu L, Ge J, Hu Z, Sun H, Zhang H, Zhu H, Jiao S (2014) Chem Mater 26:3721–3730

    Article  CAS  Google Scholar 

  20. Gong C, Bai YJ, Feng J, Tang R, Qi YX, Lun N, Fan RH (2013) ACS Appl Mater Interfaces 5(10):4209–4215

    Article  CAS  PubMed  Google Scholar 

  21. Dubal DP, Holze R (2013) Energy 51:407–412

    Article  CAS  Google Scholar 

  22. Jagadale AD, Kumbhar VS, Bulakhe RN, Lokhande CD (2014) Energy 64:234–241

    Article  CAS  Google Scholar 

  23. Akinwolemiwa B, Peng C, Chen GZ (2015) J Electrochem Soc 162:A5054–A5059

    Article  CAS  Google Scholar 

  24. Cheng LX, Zhu YQ, Chen XY, Zhang ZJ (2015) Eng Chem Res 54:9948–9955

    Article  CAS  Google Scholar 

  25. Chen K, Liu F, Xue D, Komarneni S (2015) Nanoscale 7(2):432–439

    Article  CAS  PubMed  Google Scholar 

  26. Kady MFE, Strong V, Dubin S, Kaner RB (2012) Science 335(6074):1326–1330

    Article  PubMed  Google Scholar 

  27. Sun K, Zhang Z, Peng H, Zhao G, Ma G, Lei Z (2018) Mater Chem Phys 218:229–238

    Article  CAS  Google Scholar 

Download references

Funding

DPD acknowledges the Queensland University of Technology and Australian Research Council (ARC) for the Future Fellowship (FT180100058). D.R.P. would like to thank the Department of Science and Technology (DST) for financial support (IFA-13/MS-05). D.R.P. also likes to thank Korea Institute of Energy Technology Evaluation and Planning funded by the Ministry of Trade, Industry & Energy of the Republic of Korea (20173010012940) and Global Collaborative Research Projects (2016K1A4A3914691) through Korea’s NRF for their support. TDD would like to thank Shivaji University, Kolhapur for the financial assistance under the “Research Initiation Scheme.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deepak P. Dubal or Deepak R. Patil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, S., Donolikar, P.D., Chodankar, N.R. et al. Nano-dimensional iron tungstate for super high energy density symmetric supercapacitor with redox electrolyte. J Solid State Electrochem 23, 3459–3465 (2019). https://doi.org/10.1007/s10008-019-04427-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04427-x

Keywords

Navigation