Skip to main content
Log in

A study of the electrochemical kinetics of sodium intercalation in P2/O1/O3-NaNi1/3Mn1/3Co1/3O2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Sodium ternary layered oxides, typically NaNi1/3Mn1/3Co1/3O2 (NMC), are layered structures analogous to LiNi1/3Mn1/3Co1/3O2, and have been utilized extensively in sodium-ion batteries (SIBs). The cathode material was successfully synthesized by a sol-gel process followed by a calcination step at 900 °C for 12 h. The triple-phase integration denoted as P2, O1 and O3 in the NMC sample was evidently revealed on XRD diagrams. The composite cathode material acted as an O3 purity phase that exhibited relatively good performance that delivered an initial capacity of 140 mAh g−1 and sustained reversible capacities of nearly 110 mAh g−1 after 100 cycles. The kinetics of sodium intercalation of sol-gel NMC upon reversible Na+ insertion/de-insertion was evaluated via galvanostatic intermittence titration technique (GITT) and electrochemical impedance spectroscopy (EIS). The diffusion coefficients of Na+ deduced from the GITT curve were found to lie within a wide range, 10−9–10−12 cm2 s−1 for the charge process and 10−13–10−17 cm2 s−1 for the discharge process. This implies that the kinetics of Na+ extraction out of the NaxNi1/3Mn1/3Co1/3O2 host could be much more favored than Na+ insertion. Additionally, the evolution of diffusion coefficient and charge transfer resistance are consistent with the complex phase transition generally observed in sodium layered oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  Google Scholar 

  2. Kee Y, Dimov N, Champet S et al (2016) Investigation of Al-doping effects on the NaFe0.5Mn0.5O2 cathode for Na-ion batteries. Ionics 22:2245–2248

    Article  CAS  Google Scholar 

  3. Yao H-R, Wang P-F, Gong Y et al (2017) Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. J Am Chem Soc 139:8440–8443

    Article  CAS  Google Scholar 

  4. Sun X, Jin Y, Zhang C-Y et al (2014) Na[Ni0.4Fe0.2Mn0.4−xTix]O2 : a cathode of high capacity and superior cyclability for Na-ion batteries. J Mater Chem A 2:17268–17271

    Article  CAS  Google Scholar 

  5. Hwang J-Y, Yoon CS, Belharouak I, Sun Y-K (2016) A comprehensive study of the role of transition metals in O3-type layered Na[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries. J Mater Chem A 4:17952–17959

    Article  CAS  Google Scholar 

  6. Kang H, Liu Y, Cao K, Zhao Y, Jiao L, Wang Y, Yuan H (2015) Update on anode materials for Na-ion batteries. J Mater Chem A 3:17899–17913

    Article  CAS  Google Scholar 

  7. Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271

    Article  CAS  Google Scholar 

  8. Zhu Q, Nan B, Shi Y, Zhu Y, Wu S, He L, Deng Y, Wang L, Chen Q, Lu Z (2017) Na3V2(PO4)3/C nanofiber bifunction as anode and cathode materials for sodium-ion batteries. J Solid State Electrochem 21:2985–2995

    Article  CAS  Google Scholar 

  9. Wen M, Liu X, Zhao Y, Liu S, Liu H, Dong Y, Kuang Q, Fan Q (2018) Synthesis of alluaudite-type Na2VFe2(PO4)3/C and its electrochemical performance as cathode material for sodium-ion battery. J Solid State Electrochem 22:891–898

    Article  CAS  Google Scholar 

  10. Kulova TL, Kudryashova YO, Kuz’mina AA, Skundin AM, Stenina A, Chekannikov AA, Yaroslavtsev AB, Libich J (2019) Study of degradation of Na2Тi3O7-based electrode during cycling. J Solid State Electrochem 23:455–463

    Article  CAS  Google Scholar 

  11. Dursun B, Topac E, Alibeyli R, Ata A, Ozturk O, Demir-Cakan R (2017) Fast microwave synthesis of SnO2@graphene/N-doped carbons as anode materials in sodium ion batteries. J Alloys Compd 728:1305–1314

    Article  CAS  Google Scholar 

  12. Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica 99B:81–85

    Google Scholar 

  13. Doubaji S, Ma L, Asfaw HD, Izanzar I, Xu R, Alami J, Lu J, Wu T, Amine K, Edstrӧm K, Saadoune I (2018) On the P2-NaxCo1-y(Mn2/3Ni1/3)yO2 cathode materials for sodium-ion batteries: synthesis, electrochemical performance, and redox processes occurring during the electrochemical cycling. ACS Appl Mater Interfaces 10:488–501

    Article  CAS  Google Scholar 

  14. Zheng X, Li P, Zhu H, Rui K, Zhao G, Shu J, Xu X, Sun W, Dou SX (2018) New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Mater 15:257–265

    Article  Google Scholar 

  15. Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya HA, Zhou C (2016) Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 27:27–34

    Article  CAS  Google Scholar 

  16. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517

    Article  CAS  Google Scholar 

  17. Gonzalo E, Han MH, López del Amo JM, Acebedo B, Casas-Cabanas M, Rojo T (2014) Synthesis and characterization of pure P2- and O3-Na2/3Fe2/3Mn1/3O2 as cathode materials for Na ion batteries. J Mater Chem A 2:18523–18530

    Article  CAS  Google Scholar 

  18. Han MH, Acebedo B, Gonzalo E, Fontecoba PS, Clarke S, Saurel D, Rojo T (2015) Synthesis and electrochemistry study of P2- and O3-phase Na2/3Fe1/2Mn1/2O2. Electrochim Acta 182:1029–1036

    Article  CAS  Google Scholar 

  19. Sathiya M, Hemalatha K, Ramesha K, Tarascon J-M, Prakash AS (2012) Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem Mater 24:1846–1853

    Article  CAS  Google Scholar 

  20. Xu G-L, Amine R, Xu Y-F, Liu J, Gim J, Ma T, Ren Y, Sun C-J, Liu Y, Zhang X, Heald SM, Solhy A, Saadoune I, Mattis WL, Sun S-G, Chen Z, Amine K (2017) Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ Sci 10:1677–1693

    Article  CAS  Google Scholar 

  21. Kim DJ, Ponraj R, Kannan AG, Lee H-W, Fathi R, Ruffo R, Mari CM, Kim DK (2013) Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J Power Sources 244:758–763

    Article  CAS  Google Scholar 

  22. Tang K, Yu X, Sun J, Li H, Huang X (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875

    Article  CAS  Google Scholar 

  23. Hu F, Jiang W, Dong Y, Lai X, Xiao L, Wu X (2017) Synthesis and electrochemical performance of NaV6O15 microflowers for lithium and sodium ion batteries. RSC Adv 7:29481–29488

    Article  CAS  Google Scholar 

  24. Park C-K, Park S-B, Oh S-H, Jang H, Cho WI (2011) Li ion diffusivity and improved electrochemical performances of the carbon coated LiFePO4. Bull Kor Chem Soc 32:836–840

    Article  CAS  Google Scholar 

  25. Zhu Y, Xu Y, Liu Y, Luo C, Wang C (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5:780–787

    Article  CAS  Google Scholar 

  26. Ma F, Wu Y, Wei G, Qiu S, Qu J (2019) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO. J Solid State Electrochem 23:2213–2224

    Article  CAS  Google Scholar 

  27. Rangasamy VS, Thayumanasundaram S, Locquet J-P, Seo JW (2017) Influence of sol-gel precursors on the electrochemical performance of NaMn0.33Ni0.33Co0.33O2 positive electrode for sodium-ion battery. Ionics 23:645–653

    Article  CAS  Google Scholar 

  28. Bai Y, Zhang X, Tang K, Yang L, Liu H, Liu L, Zhao Q, Wang Y, Wang X (2019) Studies on the kinetic behaviors of Na ions insertion/extraction in Na2FeSiO4/C cathode material at various desodiation states. ACS Appl Mater Interfaces 11:31980–31990

    Article  CAS  Google Scholar 

  29. Zhu Y, Wang C (2010) Galvanostatic intermittent titration technique for phase-transformation electrodes. J Phys Chem C 114:2830–2841

    Article  CAS  Google Scholar 

  30. Böckenfeld N, Balducci A (2014) Determination of sodium ion diffusion coefficients in sodium vanadium phosphate. J Solid State Electrochem 18:959–964

    Article  Google Scholar 

  31. Mahesh KC, Manjunatha H, Venkatesha TV, Suresh GS (2012) Study of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 in aqueous solution using electrochemical impedance spectroscopy. J Solid State Electrochem 16:3011–3025

    Article  CAS  Google Scholar 

  32. Kubota K, Asari T, Yoshida H, Yaabuuchi N, Shiiba H, Nakayama M, Komaba S (2016) Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries. Adv Funct Mater 26:6047–6059

    Article  CAS  Google Scholar 

  33. Sun Y, Guo S, Zhou H (2019) Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ Sci 12:825–840

    Article  CAS  Google Scholar 

  34. Yoshida H, Yabuuchi N, Komaba S (2013) NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem Commun 34:60–63

    Article  CAS  Google Scholar 

  35. Wang P-F, Yao H-R, Liu X-Y, Yin Y-X, Zhang J-N, Wen Y, Yu X, Gu L, Guo Y-G (2018) Na+/vacancy disordering promises high-rate Na-ion batteries. Sci Adv 4:eaar6018

    Article  Google Scholar 

  36. Gan L, Guo H, Wang Z, Li X, Peng W, Wang J, Huang S, Su M (2013) A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim Acta 104:117–123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work was supported by Vietnam National University of Ho Chi Minh City (VNU HCM) through research grant NV2019-18-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phung My Loan Le.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A multiple-phase P2/O1/O3 NaNi1/3Mn1/3Co1/3O2 was synthesized via sol-gel process.

• Cycling performance and rate capability testing of P2/O1/O3 NaNi1/3Mn1/3Co1/3O2 was studied in an Na half-cell.

• Correlation was achieved between the diffusion coefficient at each stage of phase transitions within Na+ and the resistance property.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nguyen, H., Nguyen, H.T.N., Huynh, N.L.T. et al. A study of the electrochemical kinetics of sodium intercalation in P2/O1/O3-NaNi1/3Mn1/3Co1/3O2. J Solid State Electrochem 24, 57–67 (2020). https://doi.org/10.1007/s10008-019-04419-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04419-x

Keywords

Navigation