Preparation and characterization of proton exchange membrane by UV photografting technique

  • A. A. Abd ElHakim
  • Somia AwadEmail author
  • M. F. Radwan
  • E. E. Abdel-Hady
  • S. M. ElKousy
Original Paper


Ultraviolet (UV)-induced graft copolymerization of glycidyl methacrylate GMA onto poly(ethylene terephthalate) (PET) films and the subsequent sulfonation on the monomer units in the grafting chain using sulfuric acid were carried out to prepare proton exchange membranes (PEMs) for fuel cells. A maximum grafting value of 23.5% was found for 15 vol% GMA after 4-h radiation time. Optimum concentration of sulfuric acid was selected for the sulfonation reaction to be 1 mol/L based on the degree of sulfonation and the tensile strength studies of the membrane. The radiation grafting and the sulfonation have been confirmed by titrimetric and gravimetric analysis as well as FTIR spectroscopy. The maximum ion exchange capacity (IEC) of 2.085 meq g−1 was found at 46.99% degree of sulfonation and the maximum proton conductivity was found to be 60.35 mS cm−1 at 30 °C and relative humidity of 100%. The various physical and chemical properties of the PEMs such as water uptake, mechanical strength, thermal durability, free-volume content, and methanol permeability were also studied as function of sulfuric acid concentration. To investigate the suitability of the prepared membrane for fuel cell applications, its properties were compared with those of Nafion 112 as standard membrane.


Polymer electrolyte membrane Glycidyl methacrylate GMA Fuel cell UV radiation grafting Sulfonation 


Supplementary material

10008_2019_4388_MOESM1_ESM.docx (60 kb)
ESM 1 (DOCX 60 kb)


  1. 1.
    Dincer I (1998) Energy and environmental impacts: present and future perspectives. Energy Sources 20(4-5):427–453CrossRefGoogle Scholar
  2. 2.
    Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48(4):RG4004. CrossRefGoogle Scholar
  3. 3.
    Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sust Energ Rev 15(3):1513–1524CrossRefGoogle Scholar
  4. 4.
    Nasef MM, Hegazy E-SA (2004) Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog Polym Sci 29(6):499–561CrossRefGoogle Scholar
  5. 5.
    Gubler L, Prost N, Gürsel SA, Scherer GG (2005) Proton exchange membranes prepared by radiation grafting of styrene/divinylbenzene onto poly(ethylene-Alt-tetrafluoroethylene) for low temperature fuel cells. Solid State Ionics 176(39-40):2849–2860CrossRefGoogle Scholar
  6. 6.
    Dworjanyn PA, Garnett JL (1988) Synergistic effects of urea with polyfunctional acrylates for enhancing the photografting of styrene to polypropylene. J Polym Sci Part C: Polym Lett 26:135–138Google Scholar
  7. 7.
    Hollahan JR (1979) Deposition of plasma silicon oxide thin films in a production planar reactor. J Electrochem Soc 126(6):930–934CrossRefGoogle Scholar
  8. 8.
    Deacon C, Wilkie CA (1996) Graft copolymerization of acrylic acid on to acrylonitrile-butadiene-styrene terpolymer and thermal analysis of the copolymers. Eur Polym J 32(4):451–455CrossRefGoogle Scholar
  9. 9.
    Hasegawa S, Suzuki Y, Maekawa Y (2008) Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique. Radiat Phys Chem 77(5):617–621CrossRefGoogle Scholar
  10. 10.
    Asano M, Chen J, Maekawa Y, Sakamura T, Kubota H, Yoshida M (2007) Novel Uv-induced photografting process for preparing poly(tetrafluoroethylene)-based proton-conducting membranes. J Polym Sci Part A: Polym Chem 45(13):2624–2637CrossRefGoogle Scholar
  11. 11.
    Ismail AF, Zubir N, Nasef MM, Dahlan KM, Hassan AR (2005) Physico-chemical study of sulfonated polystyrene pore-filled electrolyte membranes by electrons induced grafting. J Membr Sci 254(1-2):189–196CrossRefGoogle Scholar
  12. 12.
    Li J, Sato K, Ichizuri S, Asano S, Ikeda S, Iida M, Oshima A, Tabata Y, Washio M (2005) Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. Ii: characterization of the styrene grafted films. Eur Polym J 41(3):547–555CrossRefGoogle Scholar
  13. 13.
    Nasef MM, Saidi H, Nor HM, Foo OM (2000) Radiation-induced grafting of styrene onto poly (etrafluoroethylene) films. Part Ii. Properties of the grafted and sulfonated membranes. Polym Int 49(12):1572–1579CrossRefGoogle Scholar
  14. 14.
    Gil M, Ji X, Li X, Na H, Eric Hampsey J, Lu Y (2004) Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications. J Membr Sci 234(1-2):75–81CrossRefGoogle Scholar
  15. 15.
    Li X, Liu C, Lu H, Zhao C, Wang Z, Xing W, Na H (2005) Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application. J Membr Sci 255(1-2):149–155CrossRefGoogle Scholar
  16. 16.
    Yamaguchi T, Miyata F, Nakao S-i (2003) Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell. J Membr Sci 214(2):283–292CrossRefGoogle Scholar
  17. 17.
    Yamauchi A, Ito T, Yamaguchi T (2007) Low methanol crossover and high performance of Dmfcs achieved with a pore-filling polymer electrolyte membrane. J Power Sources 174(1):170–175CrossRefGoogle Scholar
  18. 18.
    Jung DH, Cho SY, Peck DH, Shin DR, Kim JS (2002) Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell. J Power Sources 106(1-2):173–177CrossRefGoogle Scholar
  19. 19.
    Panero S, Ciuffa F, D'Epifano A, Scrosati B (2003) New concepts for the development of lithium and proton conducting membranes. Electrochim Acta 48(14-16):2009–2014CrossRefGoogle Scholar
  20. 20.
    Hobson LJ, Nakano Y, Ozu H, Hayase S (2002) Targeting improved Dmfc performance. J Power Sources 104(1):79–84CrossRefGoogle Scholar
  21. 21.
    Hobson LJ, Ozu H, Yamaguchi M, Hayase S (2001) Modified Nafion 117 as an improved polymer electrolyte membrane for direct methanol fuel cells. J Electrochem Soc 148(10):A1185–A1190CrossRefGoogle Scholar
  22. 22.
    Walker M, Baumgärtner KM, Feichtinger J, Kaiser M, Räuchle E, Kerres J (1999) Barrier properties of plasma-polymerized thin films. Surf Coat Technol 116-119:996–1000CrossRefGoogle Scholar
  23. 23.
    Holmberg S, Lehtinen T, Näsman J, Ostrovskii D, Paronen M, Serimaa R, Sundholm F, Sundholm G, Torell L, Torkkeli M (1996) Structure and properties of sulfonated poly [(vinylidene fluoride)–G-styrene] norous membranes porous membranes. J Mater Chem 6(8):1309–1317CrossRefGoogle Scholar
  24. 24.
    Flint SD, Slade RCT (1997) Investigation of radiation-grafted Pvdf-G-polystyrene-sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells. Solid State Ionics 97(1-4):299–307CrossRefGoogle Scholar
  25. 25.
    Elomaa M, Hietala S, Paronen M, Walsby N, Jokela K, Serimaa R, Torkkeli M, Lehtinen T, Sundholm G, Sundholm F (2000) The state of water and the nature of ion clusters in crosslinked proton conducting membranes of styrene grafted and sulfonated poly(vinylidene fluoride). J Mater Chem 10(12):2678–2684CrossRefGoogle Scholar
  26. 26.
    Park KR, Kang PH, Nho YC (2005) Preparation of Pfa-G-polystyrene sulfonic acid membranes by the Γ-radiation grafting of styrene onto Pfa films. React Funct Polym 65(1-2):47–56CrossRefGoogle Scholar
  27. 27.
    Brack H-P, Bührer HG, Bonorand L, Scherer GG (2000) Grafting of pre-irradiated poly(ethylene-alt-tetrafluoroethylene) films with styrene: influence of base polymer film properties and processing parameters. J Mater Chem 10(8):1795–1803CrossRefGoogle Scholar
  28. 28.
    Scott K, Taama WM, Argyropoulos P (2000) Performance of the direct methanol fuel cell with radiation-grafted polymer membranes. J Membr Sci 171(1):119–130CrossRefGoogle Scholar
  29. 29.
    Li X, Drache M, Gohs U, Beuermann S (2015) Novel concept of polymer electrolyte membranes for high-temperature fuel cells based on Etfe grafted with neutral acrylic monomers. J Membr Sci 495:20–28CrossRefGoogle Scholar
  30. 30.
    Schmidt C, Schmidt-Naake G (2008) Phosphorsäuredotierte Protonenleiter Auf Basis Von Aminierten Membranen Aus Etfe-Graft-Poly-(Glycidylmethacrylat)-Derivaten. Chem Ing Tech 80(3):317–325CrossRefGoogle Scholar
  31. 31.
    Nasef MM (2000) Gamma radiation-induced graft copolymerization of styrene onto poly(ethyleneterephthalate) films. J Appl Polym Sci 77(5):1003–1012CrossRefGoogle Scholar
  32. 32.
    Gupta B, Grover N, Singh H (2009) Radiation grafting of acrylic acid onto poly(ethylene terephthalate) fabric. J Appl Polym Sci 112(3):1199–1208CrossRefGoogle Scholar
  33. 33.
    Gomaa MM, Hugenschmidt C, Dickmann M, Abdel-Hady EE, Mohamed HFM, Abdel-Hamed MO (2018) Crosslinked Pva/Ssa proton exchange membranes: correlation between physiochemical properties and free volume determined by positron annihilation spectroscopy. PCCP 20(44):28287–28299CrossRefGoogle Scholar
  34. 34.
    Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56(11):5499–5510CrossRefGoogle Scholar
  35. 35.
    Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63(1-2):51–58CrossRefGoogle Scholar
  36. 36.
    Nakanishi H, Jean YC, Smith EG, Sandreczki TC (1989) Positronium formation at free-volume sites in the amorphous regions of semicrystalline peek. J Polym Sci B Polym Phys 27(7):1419–1424CrossRefGoogle Scholar
  37. 37.
    Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res Sect A 374(2):235–244CrossRefGoogle Scholar
  38. 38.
    Kang K, Kang PH, Nho YC (2006) Preparation and characterization of a proton-exchange membrane by the radiation grafting of styrene onto polytetrafluoroethylene films. J Appl Polym Sci 99(4):1415–1428CrossRefGoogle Scholar
  39. 39.
    Ahmed M, Khan MB, Khan MA, Alam SS, Halim MA, Khan MAH (2011) Characterization of polyethyleneterephthalate (Pet) based proton exchange membranes prepared by Uv-radiation-induced graft copolymerization of styrene. J Power Sources 196(2):614–619CrossRefGoogle Scholar
  40. 40.
    Takahashi S, Okonogi H, Hagiwara T, Maekawa Y (2008) Preparation of polymer electrolyte membranes consisting of alkyl sulfonic acid for a fuel cell using radiation grafting and subsequent substitution/elimination reactions. J Membr Sci 324(1-2):173–180CrossRefGoogle Scholar
  41. 41.
    Abdel-Hady E, Abdel-Hamed M, Gomaa M (2013) Preparation and characterization of commercial polyethyleneterephthalate membrane for fuel cell applications. J Membra Sci Technol 3:1–8Google Scholar
  42. 42.
    Abdel-Hady EE, Abdel-Hamed MO, Awad S, Hmamm MFM (2018) Characterization and evaluation of commercial poly (vinylidene fluoride)-G-sulfonatedpolystyrene as proton exchange membrane. Polym Adv Technol 29(1):130–142CrossRefGoogle Scholar
  43. 43.
    Sawada S-i, Maekawa Y (2011) Proton conduction characteristics in radiation-grafted polymer electrolyte membranes based on perfluorinated and aromatic hydrocarbon polymers. ECS Trans 41:2125–2133CrossRefGoogle Scholar
  44. 44.
    Lee C-H, Wang Y-Z (2008) Synthesis and characterization of epoxy-based semi-interpenetrating polymer networks sulfonated polyimides proton-exchange membranes for direct methanol fuel cell applications. J Polym Sci Part A: Polym Chem 46(6):2262–2276CrossRefGoogle Scholar
  45. 45.
    Almeida TP, Miyazaki CM, Paganin VA, Ferreira M, Saeki MJ, Perez J, Riul A (2014) Pedot:Pss self-assembled films to methanol crossover reduction in Nafion® membranes. Appl Surf Sci 323:7–12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Packaging Materials DepartmentNational Research CenterCairoEgypt
  2. 2.Physics Department, Faculty of ScienceMinia UniversityMiniaEgypt
  3. 3.Physics DepartmentAl-Qunfudah University College, Umm Al-Qura UniversityMeccaKingdom of Saudi Arabia
  4. 4.Chemistry Department, Faculty of ScienceMonfia UniversityMonfiaEgypt

Personalised recommendations