Skip to main content

Advertisement

Log in

Thermodynamics of graphite intercalation binary alloys of Li-Na, Na-K, and Li-K from van der Waals density functionals

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphite may store lithium or potassium, but not sodium, in its interlayer space under ambient conditions. It is, however, unclear whether binary alkali alloys of Li-Na, Li-K, and Na-K may substitute pure Li or K to form binary alkali alloy-graphite intercalation compounds. We investigate thermodynamics of the binary alloy-graphite intercalation compounds using density functional theory with van der Waals density functionals. We find Li-rich co-intercalation compounds and K-rich ones are associated with negative formation energies, and the Na-K alloy has the broadest domain of co-intercalation (approximately up to 36% Na). Because of convexity of the formation-energy functions, these compounds are metastable and tend to decompose even when formation energies are negative. Na metal is among the decomposition products. Binary Li-K alloys in graphite form segregated phases of LiC6 and KC8, and this allows one to fabricate Li-K mixed-ion batteries using graphite anodes, whereas Li-Na and Na-K alloys are thermodynamically unfavorable. The study highlights the importance of convexity of formation-energy functions in thermodynamics of alloy-graphite intercalation compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lewis NS (2011) Powering the planet. MRS Bull 32:808–820

    Article  Google Scholar 

  2. Bruce D, Haresh K, Jean-Marie T (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  3. Goodenough JB (2015) Energy storage materials: a perspective. Energy Storage Mater 1:158–161

    Article  Google Scholar 

  4. Chen R, Luo R, Huang Y, Wu F, Li L (2016) Advanced high energy eensity secondary batteries with multi-electron reaction materials. Adv Sci 3(10):1600051

    Article  CAS  Google Scholar 

  5. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184

    Article  CAS  Google Scholar 

  6. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  PubMed  Google Scholar 

  7. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  8. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  PubMed  Google Scholar 

  9. Tarascon JM (2010) Is lithium the new gold? Nat Chem 2(6):510

    Article  CAS  PubMed  Google Scholar 

  10. Hong SY, Kim Y, Park Y, Choi A, Choi N-S, Lee KT (2013) Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ Sci 6(7):2067

    Article  CAS  Google Scholar 

  11. Liu Y, Artyukhov VI, Liu M, Harutyunyan AR, Yakobson BI (2013) Feasibility of lithium storage on graphene and its derivatives. J Phys Chem Lett 4(10):1737–1742

    Article  CAS  PubMed  Google Scholar 

  12. Xi X-T, Li W-H, Hou B-H, Yang Y, Gu Z-Y, Wu X-L (2019) Dendrite-free lithium anode enables the lithium//graphite dual-ion battery with much improved cyclic stability. ACS Appl Energy Mater 2(1):201–206

    Article  CAS  Google Scholar 

  13. Li W-H, Ning Q-L, Xi X-T, Hou B-H, Guo J-Z, Yang Y, Chen B, Wu X-L (2019) Highly improved cycling stability of anion de-/intercalation in the graphite cathode for dual-ion batteries. Adv Mater 31(4):1804766

    Article  CAS  Google Scholar 

  14. Wedepohl KH (1995) The composition of the continental Crust. Geochim Cosmochim Acta 59(7):1217–1232

    Article  CAS  Google Scholar 

  15. Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3(18):9353–9378

    Article  CAS  Google Scholar 

  16. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y-Y, Hou B-H, Guo J-Z, Ning Q-L, Pang W-L, Wang J, Lü C-L, Wu X-L (2018) An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv Energy Mater 8(18):1703252

    Article  CAS  Google Scholar 

  18. Pramudita JC, Sehrawat D, Goonetilleke D, Sharma N (2017) An initial review of the status of electrode materials for potassium-ion batteries. Adv Energy Mater 7(24):1602911

    Article  CAS  Google Scholar 

  19. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682

    Article  CAS  PubMed  Google Scholar 

  20. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    Article  CAS  Google Scholar 

  21. Muralidharan N, Carter R, Oakes L, Cohn AP, Pint CL (2016) Strain engineering to modify the electrochemistry of energy storage electrodes. Sci Rep 6(1):27542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5(1):4033

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Merinov BV, Goddard WA 3rd (2016) Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc Natl Acad Sci U S A 113(14):3735–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moriwake H, Kuwabara A, Fisher CAJ, Ikuhara Y (2017) Why is sodium-intercalated graphite unstable? RSC Adv 7(58):36550–36554

    Article  CAS  Google Scholar 

  25. Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186

    Article  CAS  Google Scholar 

  26. Lücking F, Köser H, Jank M, Ritter A (1998) Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Res 32(9):2607–2614

    Article  Google Scholar 

  27. Chambers A, Park C, Baker RM, Rodriguez N (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102(22):4253–4256

    Article  CAS  Google Scholar 

  28. Noel M, Santhanam R (1998) Electrochemistry of graphite intercalation compounds. J Power Sources 72(1):53–65

    Article  CAS  Google Scholar 

  29. Sim HS, Kim TA, Lee KH, Park M (2012) Preparation of graphene nanosheets through repeated supercritical carbon dioxide process. Mater Lett 89:343–346

    Article  CAS  Google Scholar 

  30. Knieke C, Berger A, Voigt M, Taylor RNK, Röhrl J, Peukert W (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48(11):3196–3204

    Article  CAS  Google Scholar 

  31. Pruvost S, Hérold C, Hérold A, Lagrange P (2003) On the great difficulty of intercalating lithium with a second element into graphite. Carbon 41(6):1281–1289

    Article  CAS  Google Scholar 

  32. Basu S, Zeller C, Flanders PJ, Fuerst CD, Johnson WD (1979) Synthesis and properties of lithium-graphite intercalation compounds. Mater Sci Eng 38(3):275–283

    Article  CAS  Google Scholar 

  33. Antoine L, Gachon JC, Guerard D (1998) Intercalation of sodium-potassium alloys into graphite. MRS Proc 548:49

    Article  Google Scholar 

  34. Iñiguez M, Alonso J (2000) Density functional-pseudopotential approach to the heat of formation in alloys of alkali metals. J Phys F Met Phys 11:2045

    Article  Google Scholar 

  35. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  36. Jones RO (2015) Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys 87(3):897–923

    Article  Google Scholar 

  37. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  38. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  39. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B Condens Matter 50(24):17953–17979

    Article  PubMed  Google Scholar 

  40. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  CAS  Google Scholar 

  41. Klimeš J, Bowler DR, Michaelides A (2010) Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 22(2):022201

    Article  PubMed  CAS  Google Scholar 

  42. Wang Z, Selbach SM, Grande T (2014) Van der Waals density functional study of the energetics of alkali metal intercalation in graphite. RSC Adv 4(8):3973–3983

    Article  Google Scholar 

  43. Nobuhara K, Nakayama H, Nose M, Nakanishi S, Iba H (2013) First-principles study of alkali metal-graphite intercalation compounds. J Power Sources 243:585–587

    Article  CAS  Google Scholar 

  44. Okamoto Y (2013) Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C 118:16–19

    Article  CAS  Google Scholar 

  45. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  46. Klimes J, Bowler D, Michaelides A (2011) Van der Waals density functionals applied to solids. Phys Rev B 83(19):195131

    Article  CAS  Google Scholar 

  47. Dion M, Rydberg H, SchröDer E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92(24):246401

    Article  CAS  PubMed  Google Scholar 

  48. Román-Pérez G, Soler JM (2009) Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett 103(9):096102

    Article  PubMed  CAS  Google Scholar 

  49. Trucano P, Chen R (1975) Structure of graphite by neutron diffraction. Nature 258(5531):136–137

    Article  CAS  Google Scholar 

  50. Guerard D, Herold A (1975) Intercalation of lithium into graphite and other carbons. Carbon 13(4):337–345

    Article  CAS  Google Scholar 

  51. Nixon DE, Parry GS (1969) The expansion of the carbon-carbon bond length in potassium graphites. J Phys C Solid State Phys 2(10):1732–1741

    Article  CAS  Google Scholar 

  52. Zhao J, Zou X, Zhu Y, Xu Y, Wang C (2016) Electrochemical intercalation of potassium into graphite. Adv Funct Mater 26(44):8103–8110

    Article  CAS  Google Scholar 

  53. King HW (1966) Quantitative size-factors for metallic solid solutions. J Mater Sci 1(1):79–90

    Article  CAS  Google Scholar 

  54. Herold A, Billaud D, Guerard D, Lagrange P (1977) Action compétitive de deux métaux Alcalins sur le graphite. Mater Sci Eng 31:25–28

    Article  CAS  Google Scholar 

  55. Xue L, Gao H, Zhou W, Xin S, Park K, Li Y, Goodenough JB (2016) Liquid K-Na alloy anode enables dendrite-free potassium batteries. Adv Mater 28(43):9608–9612

    Article  CAS  PubMed  Google Scholar 

  56. Xu Z, Lv X, Chen J, Jiang L, Lai Y, Jie L (2016) Dispersion-corrected DFT investigation on defect chemistry and potassium migration in potassium-graphite intercalation compounds for potassium ion batteries anode materials. Carbon 107:885–894

    Article  CAS  Google Scholar 

  57. Ye H, Zheng Z-J, Yao H-R, Liu S-C, Zuo T-T, Wu X-W, Yin Y-X, Li N-W, Gu J-J, Cao F-F, Guo Y-G (2019) Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew Chem 131(4):1106–1111

    Article  Google Scholar 

Download references

Funding

This work is supported by Doctoral Fund of Ministry of Education of China (20133108120021), the National Natural Science Foundation of China for Youths (51302166), and Municipal Natural Science foundation of Shanghai. The computations are performed on Compmat cluster and Ziqiang4000 supercomputer of the High Performance Computing Center of Shanghai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Guo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Xie, Y., Chen, Y. et al. Thermodynamics of graphite intercalation binary alloys of Li-Na, Na-K, and Li-K from van der Waals density functionals. J Solid State Electrochem 23, 2825–2834 (2019). https://doi.org/10.1007/s10008-019-04383-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04383-6

Keywords

Navigation