Skip to main content
Log in

Unraveling the role of binder concentration on the electrochemical behavior of mesocarbon microbead anode in lithium–ion batteries: understanding the formation of the solid electrolyte interphase

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Binders play a significant role in the electrochemical performance of anodes in lithium–ion batteries. In this study, mesocarbon microbead (MCMB) electrodes are fabricated with various binder concentrations of 4.5 wt% (MCMB-4.5), 7.5 wt% (MCMB-7.5), and 10 wt% (MCMB-10) to evaluate the optimum content of binder for a MCMB anode. The cyclic voltammetry (CV) profiles indicate a slow kinetic process of lithiation/delithiation in the MCMB-10 anode. The results demonstrate that MCMB-7.5 has the highest lithium diffusion coefficient, which represents the improved lithium diffusion kinetics of MCMB-7.5. The step-by-step electrochemical impedance spectroscopy (EIS) studies indicate that a highly conductive solid electrolyte interphase (SEI) film is formed from 0.1 to 0.01 V on MCMB-7.5 anode that not only makes up the increase of SEI resistance (RSEI), relating to the expansion of MCMB volume, but also leads to a decrease of the RSEI. The MCMB-4.5, MCMB-7.5, and MCMB-10 show self-discharge rates of 0.99, 0.28, and 1.09% per week, respectively. Thus, the MCMB-7.5 has the lowest level of parasitic reactions between the active material and electrolyte. Furthermore, the 7.5% binder concentration provides the best capacity retention along 100 cycles at 0.5 C rate, which can suggest as the optimum concentration of CMC/SBR for MCMB anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lim S, Kim S, Ahn KH, Lee SJ (2015) The effect of binders on the rheological properties and the microstructure formation of lithium-ion battery anode slurries. J Power Sources 299:221–230

    Article  CAS  Google Scholar 

  2. Loghavi MM, Mohammadi-Manesh H, Eqra R (2019) LiNi 0.8 Co 0.15 Al 0.05 O 2 coated by chromium oxide as a cathode material for lithium-ion batteries. J Electroanal Chem 23(8):2569–2578

    CAS  Google Scholar 

  3. Loghavi MM, Mohammadi-Manesh H, Eqra RJJEC (2019) Y2O3-decorated LiNi0. 8Co0. 15Al0. 05O2 cathode material with improved electrochemical performance for lithium-ion batteries. J Electroanal Chem 848:113326

    Article  CAS  Google Scholar 

  4. Jelyani MZ, Rashid-Nadimi S, Asghari S (2017) Treated carbon felt as electrode material in vanadium redox flow batteries: a study of the use of carbon nanotubes as electrocatalyst. J Solid State Electrochem 21(1):69–79

    Article  CAS  Google Scholar 

  5. Moghim MH, Eqra R, Babaiee M, Zarei-Jelyani M, Loghavi MM (2017) Role of reduced graphene oxide as nano-electrocatalyst in carbon felt electrode of vanadium redox flow battery. J Electroanal Chem 789:67–75

    Article  CAS  Google Scholar 

  6. Deng T, Zhou X (2016) The preparation of porous graphite and its application in lithium ion batteries as anode material. J Solid State Electrochem 20(10):2613–2618

    Article  CAS  Google Scholar 

  7. Kircheva N, Genies S, Brun-Buisson D, Thivel P-X (2011) Study of solid electrolyte interface formation and lithium intercalation in Li-Ion batteries by acoustic emission. J Electrochem Soc 159(1):A18–A25

    Article  CAS  Google Scholar 

  8. Yang L, Markmaitree T, Lucht BL (2011) Inorganic additives for passivation of high voltage cathode materials. J Power Sources 196(4):2251–2254

    Article  CAS  Google Scholar 

  9. Agubra VA, Fergus JW (2014) The formation and stability of the solid electrolyte interface on the graphite anode. J Power Sources 268:153–162

    Article  CAS  Google Scholar 

  10. Takanashi Y, Orikasa Y, Mogi M, Oishi M, Murayama H, Sato K, Yamashige H, Takamatsu D, Fujimoto T, Tanida H (2011) Thickness estimation of interface films formed on Li1− xCoO2 electrodes by hard X-ray photoelectron spectroscopy. J Power Sources 196(24):10679–10685

    Article  CAS  Google Scholar 

  11. Dedryvère R, Martinez H, Leroy S, Lemordant D, Bonhomme F, Biensan P, Gonbeau D (2007) Surface film formation on electrodes in a LiCoO2/graphite cell: a step by step XPS study. J Power Sources 174(2):462–468

    Article  CAS  Google Scholar 

  12. Zhang X, Ross P, Kostecki R, Kong F, Sloop S, Kerr J, Striebel K, Cairns E, McLarnon F (2001) Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles. J Electrochem Soc 148(5):A463–A470

    Article  CAS  Google Scholar 

  13. Wachtler M, Wagner MR, Schmied M, Winter M, Besenhard JO (2001) The effect of the binder morphology on the cycling stability of Li–alloy composite electrodes. J Electroanal Chem 510(1-2):12–19

    Article  CAS  Google Scholar 

  14. Lestriez B (2010) Functions of polymers in composite electrodes of lithium ion batteries. CR Chim 13(11):1341–1350

    Article  CAS  Google Scholar 

  15. Kaneko M, Nakayama M, Wakihara M (2007) Lithium-ion conduction in elastomeric binder in Li-ion batteries. J Solid State Electrochem 11(8):1071–1076

    Article  CAS  Google Scholar 

  16. Prosini PP, Cento C, Carewska M, Masci A (2015) Electrochemical performance of Li-ion batteries assembled with water-processable electrodes. Solid State Ionics 274:34–39

    Article  CAS  Google Scholar 

  17. Nagai A (2009) Applications of polyvinylidene fluoride-related materials for lithium-ion batteries. In: Lithium-Ion Batteries. Springer, pp 155–161

  18. Chou S-L, Pan Y, Wang J-Z, Liu H-K, Dou S-X (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16(38):20347–20359

    Article  CAS  PubMed  Google Scholar 

  19. Li C-C, Wang Y-W (2011) Binder distributions in water-based and organic-based LiCoO2 electrode sheets and their effects on cell performance. J Electrochem Soc 158(12):A1361–A1370

    Article  CAS  Google Scholar 

  20. Liu G, Zheng H, Song X, Battaglia VS (2012) Particles and polymer binder interaction: a controlling factor in lithium-ion electrode performance. J Electrochem Soc 159(3):A214–A221

    Article  CAS  Google Scholar 

  21. Zhang Z, Zeng T, Lai Y, Jia M, Li J (2014) A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. J Power Sources 247:1–8

    Article  CAS  Google Scholar 

  22. Versaci D, Nasi R, Zubair U, Amici J, Sgroi M, Dumitrescu M, Francia C, Bodoardo S, Penazzi N (2017) New eco-friendly low-cost binders for Li-ion anodes. J Solid State Electrochem 21(12):3429–3435

    Article  CAS  Google Scholar 

  23. Courtel FM, Niketic S, Duguay D, Abu-Lebdeh Y, Davidson IJ (2011) Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J Power Sources 196(4):2128–2134

    Article  CAS  Google Scholar 

  24. Du Pasquier A, Disma F, Bowmer T, Gozdz A, Amatucci G, Tarascon JM (1998) Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-Ion batteries. J Electrochem Soc 145(2):472–477

    Article  Google Scholar 

  25. Maleki H, Deng G, Kerzhner-Haller I, Anani A, Howard JN (2000) Thermal stability studies of binder materials in anodes for lithium-ion batteries. J Electrochem Soc 147(12):4470–4475

    Article  CAS  Google Scholar 

  26. Maleki H, Deng G, Anani A, Howard J (1999) Thermal stability studies of li-ion cells and components. J Electrochem Soc 146(9):3224–3229

    Article  CAS  Google Scholar 

  27. Osinska-Broniarz M, Martyla A, Majchrzycki L, Nowicki M, Sierczynska A (2016) Influence of polymer binder structure on the properties of the graphite anode for lithium-ion batteries. Cent Eur J Chem 7(2):182–186

    Article  CAS  Google Scholar 

  28. Lu M, Tian Y, Zheng X, Gao J, Huang B (2012) Preparation, characterization and electrochemical performance of silicon coated natural graphite as anode for lithium ion batteries. Int J Electrochem Sci 7:6180–6190

    CAS  Google Scholar 

  29. Zhang T, de Meatza I, Qi X, Paillard E (2017) Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: role of the binder. J Power Sources 356:97–102

    Article  CAS  Google Scholar 

  30. Eliseeva S, Shkreba E, Kamenskii M, Tolstopjatova E, Holze R, Kondratiev V (2019) Effects of conductive binder on the electrochemical performance of lithium titanate anodes. Solid State Ionics 333:18–29

    Article  CAS  Google Scholar 

  31. Bresser D, Buchholz D, Moretti A, Varzi A, Passerini S (2018) Alternative binders for sustainable electrochemical energy storage–the transition to aqueous electrode processing and bio-derived polymers. Energy Environ Sci 11(11):3096–3127

    Article  CAS  Google Scholar 

  32. Yoshio M, Kugino S, Dimov N (2006) Electrochemical behaviors of silicon based anode material. J Power Sources 153(2):375–379

    Article  CAS  Google Scholar 

  33. Lee J-H, Lee S, Paik U, Choi Y-M (2005) Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance. J Power Sources 147(1-2):249–255

    Article  CAS  Google Scholar 

  34. Beattie SD, Larcher D, Morcrette M, Simon B, Tarascon J-M (2008) Si electrodes for Li-ion batteries—a new way to look at an old problem. J Electrochem Soc 155(2):A158–A163

    Article  CAS  Google Scholar 

  35. Hochgatterer NS, Schweiger MR, Koller S, Raimann PR, Wöhrle T, Wurm C, Winter M (2008) Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11(5):A76–A80

    Article  CAS  Google Scholar 

  36. Liu W-R, Yang M-H, Wu H-C, Chiao S, Wu N-L (2005) Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem Solid-State Lett 8(2):A100–A103

    Article  CAS  Google Scholar 

  37. Chou S-L, Wang J-Z, Zhong C, Rahman M, Liu H-K, Dou S-X (2009) A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim Acta 54(28):7519–7524

    Article  CAS  Google Scholar 

  38. Kim G, Jeong S, Joost M, Rocca E, Winter M, Passerini S, Balducci A (2011) Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. J Power Sources 196(4):2187–2194

    Article  CAS  Google Scholar 

  39. Lux S, Schappacher F, Balducci A, Passerini S, Winter M (2010) Low cost, environmentally benign binders for lithium-ion batteries. J Electrochem Soc 157(3):A320–A325

    Article  CAS  Google Scholar 

  40. Lee J-H, Paik U, Hackley VA, Choi Y-M (2005) Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. J Electrochem Soc 152(9):A1763–A1769

    Article  CAS  Google Scholar 

  41. Wang H, Umeno T, Mizuma K, Yoshio M (2008) Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries. J Power Sources 175(2):886–890

    Article  CAS  Google Scholar 

  42. Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161(1):617–622

    Article  CAS  Google Scholar 

  43. Lee Y-S, Ryu K-S (2017) Study of the lithium diffusion properties and high rate performance of TiNb 6 O 17 as an anode in lithium secondary battery. Sci Rep 7(1):16617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Park JH, Ku J, Lim JW, J-m C, Son IH (2016) Adhesive interlayer between active film and current collector for improving the performance of silicon anodes of Li-ion batteries. J Electroanal Chem 778:53–56

    Article  CAS  Google Scholar 

  45. Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607

    Article  CAS  Google Scholar 

  46. Aboulaich A, Mouyane M, Robert F, Lippens P-E, Olivier-Fourcade J, Willmann P, Jumas J-C (2007) New Sn-based composites as anode materials for Li-ion batteries. J Power Sources 174(2):1224–1228

    Article  CAS  Google Scholar 

  47. Kim S, Hyun K, Moon JY, Clasen C, Ahn KH (2015) Depletion stabilization in nanoparticle–polymer suspensions: multi-length-scale analysis of microstructure. Langmuir 31(6):1892–1900

    Article  CAS  PubMed  Google Scholar 

  48. Cerbelaud M, Lestriez B, Guyomard D, Videcoq A, Ferrando R (2012) Brownian dynamics simulations of colloidal suspensions containing polymers as precursors of composite electrodes for lithium batteries. Langmuir 28(29):10713–10724

    Article  CAS  PubMed  Google Scholar 

  49. Lim S, Ahn KH, Yamamura M (2013) Latex migration in battery slurries during drying. Langmuir 29(26):8233–8244

    Article  CAS  PubMed  Google Scholar 

  50. Seong WM, Park K-Y, Lee MH, Moon S, Oh K, Park H, Lee S, Kang K (2018) Abnormal self-discharge in lithium-ion batteries. Energy Environ Sci 11(4):970–978

    Article  CAS  Google Scholar 

  51. Sinha NN, Smith A, Burns JC, Jain G, Eberman K, Scott E, Gardner J, Dahn J (2011) The use of elevated temperature storage experiments to learn about parasitic reactions in wound LiCoO2/graphite cells. J Electrochem Soc 158(11):A1194–A1201

    Article  CAS  Google Scholar 

  52. Ryu H, Ahn H, Kim K, Ahn J, Cho K, Nam T (2006) Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte. Electrochim Acta 52(4):1563–1566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported mainly by the Iranian Space Research Center. We also thank Dr. MH Moghim for the help of adhesion strength test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Zarei-Jelyani or Mohsen Babaiee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei-Jelyani, M., Babaiee, M., Baktashian, S. et al. Unraveling the role of binder concentration on the electrochemical behavior of mesocarbon microbead anode in lithium–ion batteries: understanding the formation of the solid electrolyte interphase. J Solid State Electrochem 23, 2771–2783 (2019). https://doi.org/10.1007/s10008-019-04381-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04381-8

Keywords

Navigation