Skip to main content
Log in

Passivity of titanium, part IV: reversible oxygen vacancy generation/annihilation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simplified Point Defect Model incorporating reversible oxygen vacancy generation/annihilation at the metal/film interface has been used to investigate the impedance of anodized titanium in 0.5 M H2SO4, the oxygen vacancy profile in the anodic titanium oxide film, and the surface oxygen vacancy concentration. This simplified Point Defect Model (PDM), which considers the oxygen vacancy as the only point defect in the film, successfully accounts for the impedance of anodized titanium over the potential range explored. The results indicate that there is a thin region of the non-uniform oxygen vacancy concentration adjacent to the film/solution interface, which has an exponentially decreasing dopant (\( {V}_O^{\cdot \cdot } \)) concentration. The results of the investigation show that the surface oxygen vacancy concentration normalized to the bulk oxygen vacancy concentration is in the range of 0.05–0.15 and is essentially independent of potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5:
Fig. 6:
Fig. 7:
Fig. 8:
Fig. 9:
Fig. 10:
Fig. 11.
Fig. 12:
Fig. 13:
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Roh B-W, Macdonald DD (2019) Passivity of titanium: part II, the defect structure of the anodic oxide film. J Solid State Electrochem 23(7):1967–1979

  2. Macdonald DD, Roh B-W (2007) Impact of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction - in honor of Dr. Boris Grafov. Russ J Electrochem 43(2):125

    Article  CAS  Google Scholar 

  3. Chen G, Cho H, Macdonald DD, Mallouk TE, Warakas CC (2003) EIS studies of porous oxygen electrodes with discrete particles: I: Impedance of catalyst oxide supports. J Electrochem Soc 150(9):E423–E428

    Article  CAS  Google Scholar 

  4. Chen G, Macdonald DD, Mallouk TE, Waraksa CC (2003) EIS studies of porous oxygen electrodes with discrete particles: II, Transmission line modeling. J Electrochem Soc 150(9):E429–E437

    Article  CAS  Google Scholar 

  5. Sikora E, Sikora J, Macdonald DD (1996) Electrochim Acta 41(6):783–789

    Article  CAS  Google Scholar 

  6. Sikora J, Sikora E, Macdonald DD (2000) Electrochim Acta 45(12):1875–1883

    Article  CAS  Google Scholar 

  7. Chao C-Y, Lin L-F, Macdonald DD (1982) J Electrochem Soc 129(9):1874

    Article  CAS  Google Scholar 

  8. Macdonald DD, Sun A, Priyantha N, Jayaweera P (2004) J Electroanal Chem 572(2):421–431

    Article  CAS  Google Scholar 

  9. Macdonald DD (1992) J Electrochem Soc 139(12):3434

    Article  CAS  Google Scholar 

  10. Macdonald DD (1999) Pure Appl Chem 71(6):951–978

    Article  CAS  Google Scholar 

  11. Macdonald DD, Smedley SI (1990) Electrochim Acta 35(11-12):1949–1956

    Article  CAS  Google Scholar 

  12. Macdonald DD (1977) Transient techniques in electrochemistry. Plenum Press, New York

    Book  Google Scholar 

  13. Marsh J, Gorse D (1998) Electrochim Acta 43(7):659–670

    Article  CAS  Google Scholar 

  14. Ohtsuka T, Masudo M, Sato N (1985) J Electrochem Soc 132(4):787

    Article  CAS  Google Scholar 

  15. Engelhardt GR, Kursten B, Macdonald DD (2019) On the nature of the electric field within the barrier layer of a passive film. Electrochimica Acta 313:367–377

  16. Nelder JA, Mead R (1965) Comput J 7(4):308–313

    Article  Google Scholar 

  17. Mathews JH, Fink KD (2004) Numerical Methods Using Matlab. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  18. Zhang L, Macdonald DD, Sikora E, Sikora J (1998) J Electrochem Soc 898:145

    Google Scholar 

  19. Beck TR (1973) J Electrochem Soc 120(10):1310

    Article  CAS  Google Scholar 

  20. Ellerbrock D (1998) Defect characterization of titanium passive films, Ph. D. Dissertation, Penn State Univ., University Park, PA

  21. Frayret C, Jaszay T, Lestienne B, Delville MH (2003) Electrochim Acta 48(12):1685–1695

    Article  CAS  Google Scholar 

  22. Bockris JOM, Reddy AKN, Aldeco MG (2002) Modern Electrochemistry, volume 2A, Fundamentals of electrodics. Kluwer Academic/Plenum Publishers, Dordrecht

    Google Scholar 

  23. Pensado-Rodriguez O, Flores JR, Urquidi-Macdonald M, Macdonald DD (1999) J Electrochem Soc 146(4):1326

    Article  CAS  Google Scholar 

  24. Macdonald DD (2005) Final technical report for the fundamental role of nano-scale oxide films in the oxidation of hydrogen and the reduction of oxygen on noble metal electrocatalysts, Grant No. DE-FG02-01ER15238

  25. Zhu Y-C (1994) Elcetrochemical and surface analysis of anodic oxide film on titanium and stochastic analysis of pit generation processes on anodized titanium, Ph. D. Dissertation, Osaka University, Osaka, Japan

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work at the Pennsylvania State University by the US Department of Energy through Grant No. DE-FG02-01ER15238 and by the Hyundai Motor Company. Additionally, Investigator No. 2 gratefully acknowledges the partial support of this work by FUTURE (Fundamental Understanding of Transport Under Reactor Extremes), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) (neutron scattering studies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Digby D. Macdonald.

Additional information

“Passivity of titanium, part 1: film growth model diagnostics” was published in (2014) J Solid State Electrochem 18(5):1485–1493

“Passivity of titanium: part II, the defect structure of the anodic oxide film” was published in (2019) J Solid state Electrochem 23(7):1967–1979

“The passivity of titanium—part III: characterization of the anodic oxide film” was published in (2019) J Solid State Electrochem 23(7):2001–2008

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

"Passivity of titanium, part I: film growth model diagnostics" was published in (2014) J Solid State Electrochem 18(5):1485-1493

"Passivity of titanium: part II, the defect structure of the anodic oxide film" was published in (2019) J Solid state Electrochem 23(7):1967-1979

"The passivity of titanium-part III: characterization of the anodic oxide film" was published in (2019) J Solid State Electrochem 23(7):2001-2008

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, B., Macdonald, D.D. Passivity of titanium, part IV: reversible oxygen vacancy generation/annihilation. J Solid State Electrochem 23, 2863–2879 (2019). https://doi.org/10.1007/s10008-019-04363-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04363-w

Keywords

Navigation