Skip to main content
Log in

Synthesis, characterization, and transport properties of Nafion-polypyrrole membrane for direct methanol fuel cell (DMFC) application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Due to their distinctive chemical, electronic, and environmental properties, polypyrrole is used as a blocking barrier for methanol leakage in direct methanol fuel cells. Here, a straightforward deposition method of polypyrrole deposition on Nafion has been achieved by chemical polymerization in an aqueous medium. The chemical polymerization has been carried out during 1 h and 24 h; thus, the effect of the polypyrrole coating has been studied toward the leakage of methanol by cyclic voltammetry. It was found that the diffusion of methanol has been reduced for at least to three decades in comparison to commercial Nafion. The effect of the polypyrrole (PPy) coating on transport properties such as water uptake, ion exchange capacity, and proton conductivity has been investigated. Scanning electrochemical microscopy (SECM) has been used to investigate quantitatively the membrane proton conductivity. A potentiometric tungsten microelectrode, positioned above the membrane, was used to monitor directly the diffusion of H+. The chemical and morphological characterization of PPy coating has been characterized by Fourier transform infrared FTIR–ATR spectroscopy, X-ray photoelectron (XPS), scanning electron microscope (SEM), and atomic force microscopy (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394–398

    Article  Google Scholar 

  2. De Diego Damiá A, León Fabregas M, Perpiñá Tordera M, Compte Torrero L (1999) Effects of air pollution and weather conditions on asthma exacerbation. Respiration 66(1):52–58

    Article  Google Scholar 

  3. Dresselhaus MS, Thomas I (2001) Alternative energy technologies. Nature 414(6861):332–337

    Article  CAS  Google Scholar 

  4. Lamy C, Leger J-M, Srinivasan S et al (2001) Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology. Mod Asp Electrochem 34:53–118

    CAS  Google Scholar 

  5. Ren X, Zelenay P, Thomas S, Davey J, Gottesfeld S (2000) Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J Power Sources 86(1-2):111–116

    Article  CAS  Google Scholar 

  6. Chen CY, Chang CL, Sung CC (2012) Operation characteristic analysis of a direct methanol fuel cell system using the methanol sensor-less control method. Fuel Cells 12(5):883–891

    Article  CAS  Google Scholar 

  7. Verma L (2000) Studies on methanol fuel cell. J Power Sources 86(1-2):464–468

    Article  CAS  Google Scholar 

  8. Olah GA, Goeppert A, Prakash GKS (2009). Beyond oil and gas: The methanol economy, second edition. (Wiley VCH, Weinheim), pp. 1–334.

  9. Park JY, Lee JH, Kang SK, Sauk JH, Song I (2008) Mass balance research for high electrochemical performance direct methanol fuel cells with reduced methanol crossover at various operating conditions. J Power Sources 178(1):181–187

    Article  CAS  Google Scholar 

  10. Broussely M, Archdale G (2004) Li-ion batteries and portable power source prospects for the next 5-10 years. J Power Sources 136(2):386–394

    Article  CAS  Google Scholar 

  11. Hikita S, Yamane K, Nakajima Y (2001) Measurement of methanol crossover in direct methanol fuel cell. JSAE Rev 22(2):151–156

    Article  CAS  Google Scholar 

  12. Liu JG, Zhao TS, Liang ZX, Chen R (2006) Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. J Power Sources 153(1):61–67

    Article  CAS  Google Scholar 

  13. Jung DH, Myoung YB, Cho SY et al (2001) A performance evaluation of direct methanol fuel cell using impregnated tetraethyl-orthosilicate in cross-linked polymer membrane. Int J Hydrog Energy 26(12):1263–1269

    Article  CAS  Google Scholar 

  14. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169(2):221–238

    Article  CAS  Google Scholar 

  15. Kannan AG, Choudhury NR, Dutta NK (2009) In situ modification of Nafion ® membranes with phospho-silicate for improved water retention and proton conduction. J Membr Sci 333(1-2):50–58

    Article  CAS  Google Scholar 

  16. Ladewig BP, Dicks A, Duke MC (2004) Modified polyaniline-Nafion-silica nanocomposites for DMFC. Proceedings of the ARCCFN Annual Conference 10–3

  17. Li L, Zhang Y (2008) Chemical modification of Nafion membrane with 3,4-ethylenedioxythiophene for direct methanol fuel cell application. J Power Sources 175(1):256–260

    Article  CAS  Google Scholar 

  18. Bazzaoui M, Martins JI, Costa SC, Bazzaoui EA, Reis TC, Martins L (2006) Sweet aqueous solution for electrochemical synthesis of polypyrrole: part 1-A. On non-ferrous metals. Electrochim Acta 51(12):2417–2426

    Article  CAS  Google Scholar 

  19. El Jaouhari A, Ben Jadi S, Aouzal Z, Bouabdellaoui M, Bazzaoui EA, Wang R, Bazzaoui M (2018). Comparison study between corrosion protection of polypyrrole synthesized on stainless steel from phthalate and saccharinate aqueous medium. Polym Test 67: 302–308

  20. Neoh KG, Lau KKS, Wong VVT et al (1996) Structure and degradation behavior of polypyrrole doped with sulfonate anions of different sizes subjected to undoping-redoping cycles. Chem Mater 106:167–172

    Article  Google Scholar 

  21. Smit MA, Ocampo AL, Espinosa-Medina MA, Sebastián PJ (2003) A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. J Power Sources 124(1):59–64

    Article  CAS  Google Scholar 

  22. Xu F, Kameche M, Innocent C (2012) Transport of ions and solvent through a Nafion membrane modified with polypyrrole. Journal of Membrane and Separation Technology 1:108–116

    CAS  Google Scholar 

  23. Jinyan YSG (2011) Preparation and characterization of PPy/Nafion composite membranes. Chinese Journal of Spectroscopy Laboratory 28(4):2098–2102

    Google Scholar 

  24. Shengzhou C, Songqing W, Weiming LIN (2012) Studies on the performance of polypyrrole-Nafion composite membranes in direct methanol fuel cells CHEN. Chemical Industry and Engineering Progress 3:541–545

    Google Scholar 

  25. Zhu J, Sattler RR, Garsuch A, Yepez O, Pickup PG (2006) Optimisation of polypyrrole/Nafion composite membranes for direct methanol fuel cells. Electrochim Acta 51(19):4052–4060

    Article  CAS  Google Scholar 

  26. Wang H, Gao J, Tong L, Yu L (2016) Facial expression recognition based on PHOG feature and sparse representation. Chinese Control Conf CCC 2016–Augus:3869–3874

  27. Hong H, Wei LI, Ying WU, En CH (2005) CV study on methanol permeation of proton exchange membrane. Battery Bimonthly 35:453–454

    Google Scholar 

  28. Jiang R, Kunz HR, Fenton JM (2006) Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells. J Memb Sci 272(1-2):116–124

    Article  CAS  Google Scholar 

  29. Abdo N, Bradley Easton E (2016) Nafion/polyaniline composite membranes for hydrogen production in the Cu-Cl thermochemical cycle. Int J Hydrog Energy 41(19):7892–7903

    Article  CAS  Google Scholar 

  30. Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S (1991) Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J Phys Chem 95(15):6040–6044

    Article  CAS  Google Scholar 

  31. Lee C, Park H, Lee Y, Lee R (2005) Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application. Ind Eng 44:7617–7626

    Article  CAS  Google Scholar 

  32. Li L, Zhang J, Wang Y (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J Memb Sci 226(1-2):159–167

    Article  CAS  Google Scholar 

  33. De Bruyne A, Delplancke JL, Winand R (1998) Comparison between polypyrrole films obtained on mild steel by electropolymerization from oxalic acid and sodium sulphate aqueous solutions. Surf Coatings Technol 99(1-2):118–124

    Article  Google Scholar 

  34. Tan Q, Lu S, Lv Y, Xu X, Si J, Xiang Y (2016) Doping structure and degradation mechanism of polypyrrole-Nafion® composite membrane for vanadium redox flow batteries. RSC Adv 6(105):103332–103336

    Article  CAS  Google Scholar 

  35. El Jaouhari A, Jadi SB, El Guerraf A et al (2018) Synthesis and spectroscopic characterization of polypyrrole PPy coating on flax fibers and its behaviour toward trimethylamine vapor. Synth Met 245:237–244

    Article  CAS  Google Scholar 

  36. El Jaouhari A, Filotás D, Kiss A et al (2016) SECM investigation of electrochemically synthesized polypyrrole from aqueous medium. J Appl Electrochem 46(12):1199–1209

    Article  Google Scholar 

  37. Song S, Tsiakaras P (2006) Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal B Environ 63(3-4):187–193

    Article  CAS  Google Scholar 

  38. Ling J, Savadogo O (2004) Comparison of methanol crossover among four types of Nafion membranes. J Electrochem Soc 151(10):A1604

    Article  CAS  Google Scholar 

  39. Ramya K, Dhathathreyan KS (2003) Direct methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane. J Electroanal Chem 542:109–115

    Article  CAS  Google Scholar 

  40. Tricoli V (1998) Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cations. J Electrochem Soc 145:72–73

    Article  Google Scholar 

  41. Hsu WY, Gierke TD (1983) Ion transport and clustering in nafion perfluorinated membranes. J Memb Sci 13(3):307–326

    Article  CAS  Google Scholar 

  42. Easton EB, Langsdorf BL, Hughes JA, Sultan J, Qi Z, Kaufman A, Pickup PG (2003) Characteristics of polypyrrole/Nafion composite membranes in a direct methanol fuel cell. J Electrochem Soc 150(10):C735

    Article  CAS  Google Scholar 

  43. Zhang C, Guo X, Fang J, Xu H, Yuan M, Chen B (2007) A new and facile approach for the preparation of cross-linked sulfonated poly(sulfide sulfone) membranes for fuel cell application. J Power Sources 170(1):42–45

    Article  CAS  Google Scholar 

  44. Zawodzinski TA (1993) Water uptake by and transport through Nafion® 117 membranes. J Electrochem Soc 140(4):1041

    Article  CAS  Google Scholar 

  45. Deligöz H, Yılmaztürk S, Yılmazo M, Damyan H (2010) The effect of self-assembled multilayer formation via LbL technique on thermomechanical and transport properties of Nafion ® 112 based composite membranes for PEM fuel cells. J Membr Sci 351(1-2):131–140

    Article  Google Scholar 

  46. Kriksunov LB, Macdonald DD, Millett PJ (1994) Tungsten/tungsten oxide pH sensing electrode for high temperature aqueous environments. J Electrochem Soc 141(11):3002–3005

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by the MESRSFC and CNRST (Morocco) under grant No. PPR/30/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bazzaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Jadi, S., El Guerraf, A., Bazzaoui, E. et al. Synthesis, characterization, and transport properties of Nafion-polypyrrole membrane for direct methanol fuel cell (DMFC) application. J Solid State Electrochem 23, 2423–2433 (2019). https://doi.org/10.1007/s10008-019-04355-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04355-w

Keywords

Navigation