Skip to main content

Advertisement

Log in

Electrodeposition of poly-NiFe-alizarin red S complex for efficient electrocatalytic oxygen evolution reactions

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel NiFeA/CPE has been fabricated by electrodepositing poly-Ni (II)-Fe (III)-alizarin red (NiFeA) complex on the surface of carbon paste electrode (CPE) in alkaline solution. The morphology and composition of NiFeA/CPE were characterized by SEM, FTIR, XPS, and XRD. The oxygen evolution reaction (OER) catalytic performance, OER process kinetics, stability, and the causes of enhanced OER performances of NiFeA/CPE were investigated. The experiment results showed that NiFeA/CPE displayed a highly efficient catalytic activity for OER and delivered a current density of 10 mA cm2 with an overpotential of 280 mV in 1 M KOH. The enhanced OER performance was due to its high active surface areas and low charge transfer resistance. The as-prepared NiFeA/CPE for OER possesses the traits of low cost, easy preparation, high activity, and durable stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Smith RDL, Prevot MS, Fagan RD, Zhang ZP, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP (2013) Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340:60–63

    Article  CAS  PubMed  Google Scholar 

  2. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502

    Article  CAS  PubMed  Google Scholar 

  3. Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F (2015) Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem Rev 115:9869–9921

    Article  CAS  PubMed  Google Scholar 

  4. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3:399–404

    Article  CAS  PubMed  Google Scholar 

  5. Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2015) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8:1404–1427

    Article  CAS  Google Scholar 

  6. Chekin F, Tahermansouri H, Besharat MR (2014) Nickel oxide nanoparticles prepared by gelatin and their application toward the oxygen evolution reaction. J Solid State Electrochem 18(3):747–753

    Article  CAS  Google Scholar 

  7. Morales-Guio CG, Liardet L, Hu X (2016) Oxidatively electrodeposited thin-film transition metal (oxy) hydroxides as oxygen evolution catalysts. J Am Chem Soc 138:8946–8957

    Article  CAS  PubMed  Google Scholar 

  8. Gao M, Yang L, Dai B, Guo X, Liu Z, Peng B (2016) A novel Ni-Schiff base complex derived electrocatalyst for oxygen evolution reaction. J Solid State Electrochem 20(10):2737–2747

    Article  CAS  Google Scholar 

  9. Barwe S, Andronescu C, Vasile E, Masa J, Schuhmann W (2017) Influence of Ni to Co ratio in mixed Co and Ni phosphides on their electrocatalytic oxygen evolution activity. Electrochem Commun 79:41–45

    Article  CAS  Google Scholar 

  10. Liu PP, Li TT, Zhu HL, Zheng YQ (2018) Manganese oxide with hollow rambutan-like morphology as highly efficient electrocatalyst for oxygen evolution reaction. J Solid State Electrochem 22:2999–3007

    Article  CAS  Google Scholar 

  11. Gong M, Dai H (2015) A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res 8:23–39

    Article  CAS  Google Scholar 

  12. Yu X, Zhang M, Yuan W, Shi G (2015) A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J Mater Chem A 3:6921–6928

    Article  CAS  Google Scholar 

  13. Lu B, Wang C, Chen S, Jinling Y, Wang G, Cao D (2013) A novel composite electrode for oxygen evolution reaction. J Solid State Electrochem 17:2277–2282

    Article  CAS  Google Scholar 

  14. Xiong Z, Si Y, Li M (2017) Improving the catalytic performance of nickel-iron oxide to oxygen evolution reaction by refining its particles with the assistance of ionic liquid. Ionics 23:789–794

    Article  CAS  Google Scholar 

  15. Gerken JB, Shaner SE, Masse RC, Porubsky NJ, Stahl SS (2014) A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal. Energy Environ Sci 7:2376–2382

    Article  CAS  Google Scholar 

  16. Jin Y, Huang S, Yue X, Du H, Shen PK (2018) Mo- and Fe- modified Ni (OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal 8:2359–2363

    Article  CAS  Google Scholar 

  17. Wang L, Wu Y, Cao R, Ren L, Chen M, Feng X, Zhou J, Wang B (2016) Fe/Ni metal−organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential. ACS Appl Mater Interfaces 8:16736–16743

    Article  CAS  PubMed  Google Scholar 

  18. Hai G, Jia X, Zhang K, Liu X, Wu Z, Wang G (2018) High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy 44:345–352

    Article  CAS  Google Scholar 

  19. Liu G, He D, Yao R, Zhao Y, Li J (2017) Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation. Electrochim Acta 253:498–505

    Article  CAS  Google Scholar 

  20. Zheng L, Song JF (2011) Electrocatalytic oxidation of hydroxylamine at Ni(II)–morin complex modified carbon nanotube paste electrode. J Appl Electrochem 41:63–70

    Article  CAS  Google Scholar 

  21. Zheng L, Song JF (2010) Electrocatalytic oxidation of methanol and other short chain aliphatic alcohols at Ni (II)–quercetin complex modified multi-wall carbon nanotube paste electrode. J Solid State Electrochem 14:43–50

    Article  CAS  Google Scholar 

  22. Yuan CZ, Sun ZT, Jiang YF, Yang ZK, Jiang N, Zhao ZW, Qazi UY, Zhang WH, Xu AW (2017) One-step in situ growth of iron–nickel sulfide nanosheets on FeNi alloy foils: high-performance and self-supported electrodes for water oxidation. Small 13:1604161

    Article  CAS  Google Scholar 

  23. Hatefi–Mehrjardi A, Ghaemi N, Karimi MA, Ghasemi M, Islami–Ramchahi S (2014) Poly–(alizarin red S)–modified glassy carbon electrode for simultaneous electrochemical determination of levodopa, homovanillic acid and ascorbic acid. Electroanalysis 26:2491–2500

    Article  CAS  Google Scholar 

  24. Aravindan N, Sangaranarayanan MV (2017) Differential pulse voltammetry as an alternate technique for over oxidation of polymers: application of electrochemically synthesized over oxidized poly (Alizarin Red S) modified disposable pencil graphite electrodes for simultaneous detection of hydroquinone and catechol. J Electroanal Chem 789:148–159

    Article  CAS  Google Scholar 

  25. Tang H, Wang LF, Yang RD (2001) Preparation and antibacteria of the complexes of alizarin with rare earth. Chin Rare Earths 22(3):15–18

    Google Scholar 

  26. Li TQ, Wang CY, An BX, Wang H (2005) Preparation of graphitic carbon foam using size-restriction method under atmospheric pressure. Carbon 43:2030–2032

    Article  CAS  Google Scholar 

  27. Dong B, Zhao X, Han GQ, Li X, Shang X, Liu YR, Hu WH, Chai YM, Zhao H, Liu CG (2016) Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for oxygen evolution reaction. J Mater Chem A 4:13499–13508

    Article  CAS  Google Scholar 

  28. Tan L, Su Z, Yang R, Tao J, Zhao D, Zhang Z, Wen F (2018) Oxygen evolution catalytic performance of quantum dot nickel-iron double hydroxide/reduced graphene oxide composites. Mater Lett 231:24–27

    Article  CAS  Google Scholar 

  29. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086

    Article  CAS  PubMed  Google Scholar 

  30. Xie A, Du J, Tao F, Tao Y, Xiong Z, Luo S, Li X, Yao C (2019) Three–dimensional graphene surface–mounted nickel-based metal organic framework for oxygen evolution reaction. Electrochim Acta 305:338–348

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the National Natural Science Foundation of China (Grant No. 21675123) and the Science & Technology Innovation Foundation of Xi’an Shiyou University (No. Z09137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., He, C. Electrodeposition of poly-NiFe-alizarin red S complex for efficient electrocatalytic oxygen evolution reactions. J Solid State Electrochem 23, 2595–2600 (2019). https://doi.org/10.1007/s10008-019-04354-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04354-x

Keywords

Navigation