Skip to main content
Log in

Stress evolution with concentration-dependent compositional expansion in a silicon lithium-ion battery anode particle

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Silicon with the highest known theoretical capacity for lithium uptake may expand in volume by as much as 400%, leading to pulverization and capacity fading. This volume expansion is traditionally modelled using a constant value of the coefficient of compositional expansion (CCE) even though it has been already shown that the CCE may vary significantly with lithium concentration. In the present work, this variation is incorporated into a continuum model based on finite deformation theory, and the resulting framework is used to study two model cases: a solid Si particle and an annular Si particle undergoing lithiation. The mechanical behavior is investigated considering the two-way coupling between stress and diffusion of lithium in silicon both with and without plasticity. Striking quantitative and qualitative differences are observed when the mechanical stresses within the Si particle are compared for the cases of concentration-dependent CCE and constant CCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang S, Zhu T (2011) Atomistic mechanisms of lithium insertion in amorphous silicon. J Power Sources 196(7):3664–3668

    Article  CAS  Google Scholar 

  2. Karden E, Ploumen S, Fricke B, Miller T, Snyder K (2007) Energy storage devices for future hybrid electric vehicles. J Power Sources 168(1):2–11

    Article  CAS  Google Scholar 

  3. Fischer M, Werber M, Schwartz PV (2009) Batteries: higher energy density than gasoline? Energy Policy 37(7):2639–2641

    Article  Google Scholar 

  4. Tarascon JM, Armand M (2010) Issues and challenges facing rechargeable lithium batteries. Mater Sust Energy:171–179

  5. Ma D, Cao Z, Hu A (2014) Si-based anode materials for Li-ion batteries: a mini review. Nano-Micro Lett 6(4):347–358

    Article  CAS  Google Scholar 

  6. Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039

    Article  CAS  Google Scholar 

  7. Boukamp BA, Lesh GC, Huggins RA (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128(4):725–729

    Article  CAS  Google Scholar 

  8. Song J, Zhou M, Yi R, Xu T, Gordin ML, Tang D, Yu Z, Regula M, Wang D (2014) Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater 24(37):5904–5910

    Article  CAS  Google Scholar 

  9. Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR (2001) Colossal reversible volume changes in lithium alloys. Electrochem Solid-State Lett 4(9):A137–A140

    Article  CAS  Google Scholar 

  10. Okamoto H (2009) Li-Si (lithium-silicon). J Phase Equilibria Diffus 30(1):118–119

    Article  CAS  Google Scholar 

  11. Sharma RA, Seefurth RN (1976) Thermodynamic properties of the lithium-silicon system. J Electrochem Soc 123(12):1763–1768

    Article  CAS  Google Scholar 

  12. Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4(1):1300882

    Article  CAS  Google Scholar 

  13. Wang X, Shen W, Huang X, Zang J, Zhao Y (2017) Estimating the thickness of diffusive solid electrolyte interface. Sci China Phys Mech Astron 60(6):64612

    Article  CAS  Google Scholar 

  14. Zuo P, Zhao Y-P (2016) Phase field modeling of lithium diffusion, finite deformation, stress evolution and crack propagation in lithium ion battery. Extrem Mech Lett 9:467–479

    Article  Google Scholar 

  15. Zuo P, Zhao Y-P (2015) A phase field model coupling lithium diffusion and stress evolution with crack propagation and application in lithium ion batteries. Phys Chem Chem Phys 17(1):287–297

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Dahn JR (2007) An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc 154(3):A156–A161

    Article  CAS  Google Scholar 

  17. Chen CY, Sano T, Tsuda T, Ui K, Oshima Y, Yamagata M, Ishikawa M, Haruta M, Doi T, Inaba M, Kuwabata S (2016) In-situ scanning electron microscopy of silicon anode reactions in lithium-ion batteries during charge/discharge processes. Sci Rep 6(1):36153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McDowell MT, Lee SW, Harris JT, Korgel BA, Wang C, Nix WD, Cui Y (2013) In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett 13(2):758–764

    Article  CAS  PubMed  Google Scholar 

  19. Ogata K, Salager E, Kerr CJ, Fraser AE, Ducati C, Morris AJ, Hofmann S, Grey CP (2014) Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy. Nat Commun 5(1):3217

    Article  CAS  PubMed  Google Scholar 

  20. Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154(2):A103–A108

    Article  CAS  Google Scholar 

  21. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35

    Article  CAS  PubMed  Google Scholar 

  22. Christensen J, Newman J (2006) Stress generation and fracture in lithium insertion materials. J Solid State Electrochem 10(5):293–319

    Article  CAS  Google Scholar 

  23. Liu WR, Wang JH, Wu HC, Shieh DT, Yang MH, Wu NL (2005) Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J Electrochem Soc 152(9):A1719–A1725

    Article  CAS  Google Scholar 

  24. Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4(1):1943

    Article  PubMed  CAS  Google Scholar 

  25. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2):1522–1531

    Article  CAS  PubMed  Google Scholar 

  26. Kim H, Seo M, Park MH, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chemie Int Ed 49(12):2146–2149

    Article  CAS  Google Scholar 

  27. Kwon Y, Park GS, Cho J (2007) Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots. Electrochim Acta 52(14):4663–4668

    Article  CAS  Google Scholar 

  28. Hieu NS, Lim JC, Lee JK (2012) Free-standing silicon nanorods on copper foil as anode for lithium-ion batteries. Microelectron Eng 89:138–140

    Article  CAS  Google Scholar 

  29. Nguyen SH, Lim JC, Lee JK (2012) Electrochemical characteristics of bundle-type silicon nanorods as an anode material for lithium ion batteries. Electrochim Acta 74:53–58

    Article  CAS  Google Scholar 

  30. Peng K, Jie J, Zhang W, Lee ST (2008) Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett 93(3):33105

    Article  CAS  Google Scholar 

  31. Huang R, Zhu J (2010) Silicon nanowire array films as advanced anode materials for lithium-ion batteries. Mater Chem Phys 121(3):519–522

    Article  CAS  Google Scholar 

  32. Cho JH, Picraux ST (2013) Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Lett 13(11):5740–5747

    Article  CAS  PubMed  Google Scholar 

  33. Chan CK, Patel RN, O’Connell MJ, Korgel BA, Cui Y (2010) Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4(3):1443–1450

    Article  CAS  PubMed  Google Scholar 

  34. Song T, Xia J, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, Doo SK, Chang H, Park WI, Zang DS (2010) Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett 10(5):1710–1716

    Article  CAS  PubMed  Google Scholar 

  35. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol 7(5):310–315

    Article  CAS  PubMed  Google Scholar 

  36. Yu X, Xue F, Huang H, Liu C, Yu J, Sun Y, Dong X, Cao G, Jung Y (2014) Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries. Nanoscale 6(12):6860–6865

    Article  CAS  PubMed  Google Scholar 

  37. Kim WS, Hwa Y, Shin JH, Yang M, Sohn HJ, Hong SH (2014) Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale 6(8):4297–4302

    Article  CAS  PubMed  Google Scholar 

  38. Kim H, Huang X, Wen Z, Cui S, Guo X, Chen J (2015) Novel hybrid Si film/carbon nanofibers as anode materials in lithium-ion batteries. J Mater Chem A 3(5):1947–1952

    Article  CAS  Google Scholar 

  39. Graetz J, Ahn CC, Yazami R, Fultz B (2003) Highly reversible lithium storage in nanostructured silicon. Electrochem Solid-State Lett 6(9):A194–A197

    Article  CAS  Google Scholar 

  40. Lai X, Halpert JE, Wang D (2012) Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci 5(2):5604–5618

    Article  CAS  Google Scholar 

  41. Fan SQ, Fang B, Kim JH, Kim JJ, Yu JS, Ko J (2010) Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells. Appl Phys Lett 96(6):063501

    Article  CAS  Google Scholar 

  42. Liu J, Xue D (2010) Hollow nanostructured anode materials for Li-ion batteries. Nanoscale Res Lett 5(10):1525–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng YT, Verbrugge MW (2009) Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J Power Sources 190(2):453–460

    Article  CAS  Google Scholar 

  44. Cheng YT, Verbrugge MW (2010) Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J Electrochem Soc 157(4):A508–A516

    Article  CAS  Google Scholar 

  45. Jia H, Zheng J, Song J, Luo L, Yi R, Estevez L, Zhao W, Patel R, Li X, Zhang JG (2018) A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 50:589–597

    Article  CAS  Google Scholar 

  46. Cui Z, Gao F, Qu J (2012) A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J Mech Phys Solids 60(7):1280–1295

    Article  CAS  Google Scholar 

  47. Bower AF, Guduruand PR, Sethuraman VA (2011) A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J Mech Phys Solids 59(4):804–828

    Article  CAS  Google Scholar 

  48. Wu H, Xie Z, Wang Y, Lu C, Ma Z (2018) Modeling diffusion–induced stress on two-phase lithiation in lithium-ion batteries. Eur J Mech-A/Solids 71:320–325

    Article  Google Scholar 

  49. Wen J, Wei Y, Cheng YT (2018) Stress evolution in elastic-plastic electrodes during electrochemical processes: a numerical method and its applications. J Mech Phys Solids 116:403–415

    Article  CAS  Google Scholar 

  50. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11(7):2949–2954

    Article  CAS  PubMed  Google Scholar 

  51. Chen S, Gordin ML, Yi R, Howlett G, Sohn H, Wang D (2012) Silicon core–hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. Phys Chem Chem Phys 14(37):12741

    Article  CAS  PubMed  Google Scholar 

  52. Fang G, Deng X, Zou J, Zeng X (2019) Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries. Electrochim Acta 295:498–506

    Article  CAS  Google Scholar 

  53. Neogi S, Chakraborty J (2018) Size-dependent effects sensitively determine buckling of a cylindrical silicon electrode particle in a lithium-ion battery. J Appl Phys 124(15):154302

    Article  CAS  Google Scholar 

  54. Zhang S (2017) Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries. npj Comput Mater 3:7

    Article  CAS  Google Scholar 

  55. Dobrovolsky YA, Evschik EY, Zyubin AS, Zyubina TS, Shikhovtseva AV, Volokhov VM (2019) Silicon rods as a negative electrode material for lithium-ion cells: quantum chemical modeling. Chem Phys 519:45–51

    Article  CAS  Google Scholar 

  56. de Vasconcelos LS, Xu R, Zhao K (2017) Operando nanoindentation: a new platform to measure the mechanical properties of electrodes during electrochemical reactions. J Electrochem Soc 164(14):A3840–A3847

    Article  CAS  Google Scholar 

  57. Berla LA, Lee SW, Cui Y, Nix WD (2015) Mechanical behavior of electrochemically lithiated silicon. J Power Sources 273:41–51

    Article  CAS  Google Scholar 

  58. Bhowmik A, Malik R, Prakash S, Sarkar T, Bharadwaj MD, Aich S, Ghosh S (2016) Classical molecular dynamics and quantum ab-initio studies on lithium-intercalation in interconnected hollow spherical nano-spheres of amorphous silicon. J Alloys Compd 665:165–172

    Article  CAS  Google Scholar 

  59. Mendez JP, Ponga M, Ortiz M (2018) Diffusive molecular dynamics simulations of lithiation of silicon nanopillars. J Mech Phys Solids 115:123–141

    Article  CAS  Google Scholar 

  60. Chakraborty J, Please CP, Goriely A, Chapman SJ (2015) Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery. Int J Solids Struct 54:66–81

    Article  CAS  Google Scholar 

  61. Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu BX (2019) A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J Power Sources 413:259–283

    Article  CAS  Google Scholar 

  62. Grazioli D, Magri M, Salvadori A (2016) Computational modeling of Li-ion batteries. Comput Mech 58(6):889–909

    Article  Google Scholar 

  63. Zhao Y, Stein P, Xu B-X (2015) Isogeometric analysis of mechanically coupled Cahn–Hilliard phase segregation in hyperelastic electrodes of Li-ion batteries. Comput Methods Appl Mech Eng 297:325–347

    Article  Google Scholar 

  64. Anand L (2012) A Cahn–Hilliard-type theory for species diffusion coupled with large elastic–plastic deformations. J Mech Phys Solids 60(12):1983–2002

    Article  CAS  Google Scholar 

  65. Shenoy VB, Johari P, Qi Y (2010) Elastic softening of amorphous and crystalline Li-Si phases with increasing Li concentration: a first-principles study. J Power Sources 195(19):6825–6830

    Article  CAS  Google Scholar 

  66. Liu XH, Fan F, Yang H, Zhang S, Huang JY, Zhu T (2013) Self-limiting lithiation in silicon nanowires. ACS Nano 7(2):1495–1503

    Article  CAS  PubMed  Google Scholar 

  67. Haftbaradaran H, Song J, Curtin WA, Gao H (2011) Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J Power Sources 196(1):361–370

    Article  CAS  Google Scholar 

Download references

Funding

JC thanks the DST-INSPIRE Program of the Government of India (DST/INSPIRE Faculty Award/2016/DST/INSPIRE/04/2015/002825) and the Institute Scheme for Innovative Research and Development of IIT Kharagpur (IIT/SRIC/ME/MFD/2017-18/70). SG thanks Sponsored Research and Industrial Consultancy, IIT Kharagpur, for an internal grant under the SGIRG scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chakraborty.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dora, J.K., Sengupta, A., Ghosh, S. et al. Stress evolution with concentration-dependent compositional expansion in a silicon lithium-ion battery anode particle. J Solid State Electrochem 23, 2331–2342 (2019). https://doi.org/10.1007/s10008-019-04353-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04353-y

Keywords

Navigation