Skip to main content
Log in

Effect of Al2O3 nanoparticles on ionic conductivity of PVdF-HFP/PMMA blend-based Na+-ion conducting nanocomposite gel polymer electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, the effect of dispersion of Al2O3 nanoparticles on ionic conductivity of non-aqueous PVdF-HFP/PMMA blend-based nanocomposite gel polymer electrolyte system comprising liquid electrolyte of sodium trifluoromethanesulfonate is investigated. The ionic conductivity of the electrolyte increases maximum to ∼ 1.5 × 10−3 S cm−1 for the composition with 6 wt% Al2O3 nanoparticles. The optimized composition retains Vogel-Tamman-Fulcher (VTF) behavior in the temperature range from − 50 to 95 °C. The scanning electron micrography and x-ray diffraction studies reveal the uniform dispersion of Al2O3 nanoparticles in the porous structure of the nanocomposite gel polymer electrolyte and enhanced amorphicity of polymer matrix. The optimized electrolyte composition owns a sufficiently large electrochemical stability window of ~ 3.6 V with good sodium ion transference number. The optimized electrolyte is used in a prototype sodium battery cell, which shows an open circuit potential of ~ 2.5 V and first discharge capacity ~ 400 mA h g−1 followed by a capacity decline with cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360

    Article  CAS  Google Scholar 

  2. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614

    Article  CAS  PubMed  Google Scholar 

  3. Kubota K, Komaba S (2015) Review—practical issues and future perspective for Na-ion batteries. J Electrochem Soc 162(14):A2538–A2550

    Article  CAS  Google Scholar 

  4. Kumar D, Rajouria SK, Kuhar SB, Kanchan DK (2017) Progress and prospects of sodium-sulfur batteries: a review. Solid State Ionics 312:8–16

    Article  CAS  Google Scholar 

  5. Attias R, Salama M, Hirsch B, Goffer Y, Aurbach D (2019) Anode-electrolyte interfaces in secondary magnesium batteries. Joule 3(1):27–52

    Article  CAS  Google Scholar 

  6. Muldoon J, Bucur CB, Gregory T (2017) Fervent hype behind magnesium batteries: an open call to synthetic chemists—electrolytes and cathodes needed. Angew Chem Int Ed 56(40):12064–12084

    Article  CAS  Google Scholar 

  7. Khor A, Leung P, Mohamed MR, Flox C, Xu Q, An L, Wills RGA, Morante JR, Shah AA (2018) Review of zinc-based hybrid flow batteries: from fundamentals to applications. Mater Today Energy 8:80–108

    Article  Google Scholar 

  8. Chen X, Zhou Z, Karahan HE, Shao Q, Wei L, Chen Y (2018) Recent advances in materials and design of electrochemically rechargeable zinc–air batteries. Small 14(44):1801929

    Article  CAS  Google Scholar 

  9. Masese T, Yoshii K, Yamaguchi Y, Okumura T, Huang ZD, Kato M, Kubota K, Furutani J, Orikasa Y, Senoh H, Sakaebe H, Shikano M (2018) Rechargeable potassium-ion batteries with honeycomb-layered tellurates as high voltage cathodes and fast potassium-ion conductors. Nat Commun 9(1):3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moyer K, Donohue J, Ramanna N, Cohn AP, Muralidharan N, Eaves J, Pint CL (2018) High-rate potassium ion and sodium ion batteries by co-intercalation anodes and open framework cathodes. Nanoscale 10(28):13335–13342

    Article  CAS  PubMed  Google Scholar 

  11. Ponrouch A, Monti D, Boschin A, Steen B, Johansson P, Palacín MR (2015) Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 3(1):22–42

    Article  CAS  Google Scholar 

  12. Che H, Chen S, Xie Y, Wang H, Amine K, Liao XZ, Ma ZF (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10(5):1075–1101

    Article  CAS  Google Scholar 

  13. Wu F, Zhu N, Bai Y, Liu L, Zhou H, Wu C (2016) Highly safe ionic liquid electrolytes for sodium-ion battery: wide electrochemical window and good thermal stability. ACS Appl Mater Interfaces 8(33):21381–21386

    Article  CAS  PubMed  Google Scholar 

  14. Monti D, Jónsson E, Palacín MR, Johansson P (2014) Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity. J Power Sources 245:630–636

    Article  CAS  Google Scholar 

  15. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279

    Article  CAS  Google Scholar 

  16. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001 (pp 18)

    Article  CAS  Google Scholar 

  17. Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8(7):1702184

    Article  CAS  Google Scholar 

  18. Yadav N, Mishra K, Hashmi SA (2017) Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor. Electrochim Acta 235:570–582

    Article  CAS  Google Scholar 

  19. Yang YQ, Chang Z, Li MX, Wang XW, Wu YP (2015) A sodium ion conducting gel polymer electrolyte. Solid State Ionics 269:1–7

    Article  CAS  Google Scholar 

  20. Xue Y, Quesnel DJ (2016) Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes. RSC Adv 6(9):7504–7510

    Article  CAS  Google Scholar 

  21. Kumar D, Hashmi SA (2010) Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195(15):5101–5108

    Article  CAS  Google Scholar 

  22. Hashmi SA, Bhat MY, Singh MK, Sundaram NTK, Raghupathy BPC, Tanaka H (2016) Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers. J Solid State Electrochem 20(10):2817–2826

    Article  CAS  Google Scholar 

  23. Vignarooban K, Badami P, Dissanayake MAKL, Ravirajan P, Kannan AM (2017) Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries. Ionics 23(10):2817–2822

    Article  CAS  Google Scholar 

  24. Edmondson CA, Wintersgill MG, Fontanella JJ, Gerace F, Scrosati B, Greenbaum SG (1996) High pressure NMR and electrical conductivity studies of gel electrolytes based on poly(acrylonitrile). Solid State Ionics 85(1-4):173–179

    Article  CAS  Google Scholar 

  25. He Z, Cao Q, Jing B, Wang X, Deng Y (2017) Gel electrolytes based on poly(vinylidenefluoride-co-hexafluoropropylene)/thermoplastic polyurethane/poly(methyl methacrylate) with in situ SiO2 for polymer lithium batteries. RSC Adv 7(6):3240–3248

    Article  CAS  Google Scholar 

  26. Gebreyesus MA, Purushotham Y, Kumar JS (2016) Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidenefluoride-co-hexafluoropropylene) and poly(methyl methacrylate). Heliyon 2(7):e00134

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jacob MME, Hackett E, Giannelis EP (2003) From nanocomposite to nanogel polymer electrolytes. J Mater Chem 13(1):1–5

    Article  CAS  Google Scholar 

  28. Scrosati B, Corce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolyte. J Electrochem Soc 147(5):1718–1721

    Article  CAS  Google Scholar 

  29. Mishra K, Garg A, Sharma R, Gautam R, Pundir SS (2019) Effect of blending of PMMA on PVdF-HFP+ NaCF3SO3-EC-PC gel polymer electrolyte. Mater Today Proc 12:621–627

    Article  Google Scholar 

  30. Mishra K, Hashmi SA, Rai DK (2013) Nanocomposite blend gel polymer electrolyte for proton battery application. J Solid State Electrochem 17(3):785–793

    Article  CAS  Google Scholar 

  31. Pundir SS, Mishra K, Rai DK (2018) Ion transport studies in nanocomposite polymer electrolyte membrane of PVA–[C4C1Im][HSO4]–SiO2. J Solid State Electrochem 22:1201–1215

    Article  CAS  Google Scholar 

  32. Kumar B (2004) From colloidal to composite electrolytes: properties, peculiarities, and possibilities. J. Power Sources 135(1-2):215–231

    Article  CAS  Google Scholar 

  33. Saito Y, Kataoka H, Quartarone E, Mustarelli P (2002) Carrier migration mechanism of physically cross-linked polymer gel electrolytes based on PVDF membranes. J Phys Chem B 106(29):7200–7204

    Article  CAS  Google Scholar 

  34. Mishra K, Hashmi SA, Rai DK (2014) Protic ionic liquid based gel polymer electrolyte: evidence of proton conduction and performance studies of proton battery. J Solid State Electrochem 18(8):2255–2266

    Article  CAS  Google Scholar 

  35. Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 6:1016–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang YX, Zhang B, Lai W, Xu Y, Chou SL, Liu HK, Dou SX (2017) Room temperature sodium-sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv Energy Mater 7(24):1602829

    Article  CAS  Google Scholar 

  37. Kumar D, Kanchan DK, Kumar S, Mishra K (2019) Recent trends on tailoring cathodes for room-temperature Na-S batteries. Mater Sci Energy Technol 2:117–129

    Google Scholar 

Download references

Acknowledgments

One of us (DK) thanks and acknowledges the encouragement and motivation received from Electronics and Mechanical Engineering School, Corps of Electronics and Mechanical Engineers, Ministry of Defence, Government of India.

Funding

This study was financially supported by the Science and Engineering Research Board, a statutory body of the Department of Science and Technology, Government of India (File No: YSS/2015/001234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Mishra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, K., Arif, T., Kumar, R. et al. Effect of Al2O3 nanoparticles on ionic conductivity of PVdF-HFP/PMMA blend-based Na+-ion conducting nanocomposite gel polymer electrolyte. J Solid State Electrochem 23, 2401–2409 (2019). https://doi.org/10.1007/s10008-019-04348-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04348-9

Keywords

Navigation