Skip to main content
Log in

Capacitance of graphene films: effect of the number of layers of the constituent graphene flakes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Assembly of graphene flakes into a film for an electric double-layer capacitor electrode causes restacking and aggregation of the constituent flakes that severely reduces the specific capacitance of the electrode. An understanding of different factors affecting aggregation will lead to strategies for improving the specific capacitance of graphene-based electrodes. In this work, we show that the number of layers of the constituent graphene flakes strongly affects the specific capacitance of the electrodes. For this, we prepared films from completely trilayer- and bilayer-rich graphene suspensions. The average thickness was considerably less, and the electrochemical surface area was considerably higher for the film of bilayer graphene flakes compared with the film of trilayer graphene flakes. The specific capacitance of the film of bilayer graphene (373 F/g) was at least 1.5 times higher than the value (238 F/g) for the film of trilayer graphene. An empirical approach using cyclic voltammetry showed that the amount of film surface easily accessible to the electrolyte was also higher for the film of bilayer flakes compared with the film of trilayer flakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer US

  2. Tamgadge RM, Shukla A (2018) Fluorine-doped anatase for improved supercapacitor electrode. Electrochim Acta 289:342–353

    Article  CAS  Google Scholar 

  3. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5(25):12653–12672

    Article  CAS  Google Scholar 

  4. Cranford SW, Buehler MJ (2011) Packing efficiency and accessible surface area of crumpled graphene. Phys Rev B 84:205451–205457

  5. Jow TR, Zheng JP (2011) Amorphous thin film ruthenium oxide as an electrode material for electrochemical capacitors. MRS Proc 393:5–9

    Google Scholar 

  6. Wang DW, Li F, Zhao JP, Ren W, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7):1745–1752

    Article  CAS  PubMed  Google Scholar 

  7. Shulga YM, Baskakov SA, Abalyaeva VV, Efimov ON, Shulga NY, Michtchenko A, Lartundo-Rojas L, Moreno-R LA, Cabañas-Moreno JG, Vasilets VN (2013) Composite material for supercapacitors formed by polymerization of aniline in the presence of graphene oxide nanosheets. J Power Sources 224:195–201

    Article  CAS  Google Scholar 

  8. Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos E(L), Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196(8):4102–4108

    Article  CAS  Google Scholar 

  9. Shao Y, El-Kady MF, Wang LJ et al (2015) Graphene-based materials for flexible supercapacitors. Chem Soc Rev 44(11):3639–3665

    Article  CAS  PubMed  Google Scholar 

  10. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470

    Article  CAS  PubMed  Google Scholar 

  11. Güneş F, Shin H-J, Biswas C, Han GH, Kim ES, Chae SJ, Choi JY, Lee YH (2010) Layer-by-layer doping of few-layer graphene film. ACS Nano 4(8):4595–4600

    Article  CAS  PubMed  Google Scholar 

  12. Gan S, Zhong L, Wu T, Han D, Zhang J, Ulstrup J, Chi Q, Niu L (2012) Spontaneous and fast growth of large-area graphene nanofilms facilitated by oil/water interfaces. Adv Mater 24(29):3958–3964

    Article  CAS  PubMed  Google Scholar 

  13. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  CAS  PubMed  Google Scholar 

  14. Lei Z, Christov N, Zhao XS (2011) Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ Sci 4(5):1866–1873

    Article  CAS  Google Scholar 

  15. Vickery JL, Patil AJ, Mann S (2009) Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21(21):2180–2184

    Article  CAS  Google Scholar 

  16. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868

    Article  CAS  PubMed  Google Scholar 

  17. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes – a review. J Mater 2:37–54

    Google Scholar 

  18. Parvez K, Li R, Puniredd SR, Hernandez Y, Hinkel F, Wang S, Feng X, Müllen K (2013) Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7(4):3598–3606

    Article  CAS  PubMed  Google Scholar 

  19. Lui CH, Li Z, Mak KF, Cappelluti E, Heinz TF (2011) Observation of an electrically tunable band gap in trilayer graphene. Nat Phys 7(12):944–947

    Article  CAS  Google Scholar 

  20. Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248):820–823

    Article  CAS  PubMed  Google Scholar 

  21. Mir A, Shukla A (2018) Bilayer-rich graphene suspension from electrochemical exfoliation of graphite. Mater Des 156:62–70

    Article  CAS  Google Scholar 

  22. Mir A, Shukla A (2018) Electrochemical exfoliation of graphite to stage-III graphite bisulfate flakes in low concentration sulfuric acid solution: a novel synthesis route to completely trilayer graphene suspension. Appl Surf Sci 443:157–166

    Article  CAS  Google Scholar 

  23. Kogikoski S, Sousa CP, Liberato MS, Andrade-Filho T, Prieto T, Ferreira FF, Rocha AR, Guha S, Alves WA (2016) Multifunctional biosensors based on peptide–polyelectrolyte conjugates. Phys Chem Chem Phys 18(4):3223–3233

    Article  CAS  PubMed  Google Scholar 

  24. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. John Wiley & Sons, Inc., New York

    Google Scholar 

  25. Yang H, Yang J, Bo Z, Zhang S, Yan J, Cen K (2016) Edge effects in vertically-oriented graphene based electric double-layer capacitors. J Power Sources 324:309–316

    Article  CAS  Google Scholar 

  26. Wang G, Sun X, Lu F, Sun H, Yu M, Jiang W, Liu C, Lian J (2012) Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small 8(3):452–459

    Article  CAS  PubMed  Google Scholar 

  27. Park S-H, Kim H-K, Yoon S-B, Lee CW, Ahn D, Lee SI, Roh KC, Kim KB (2015) Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices. Chem Mater 27(2):457–465

    Article  CAS  Google Scholar 

  28. Ke Q, Liu Y, Liu H, Zhang Y, Hu Y, Wang J (2014) Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Adv 4(50):26398–26406

    Article  CAS  Google Scholar 

  29. Ardizzone S, Fregonara G, Trasatti S (1990) “Inner” and “outer” active surface of RuO2 electrodes. Electrochim Acta 35(1):263–267

    Article  CAS  Google Scholar 

  30. Lindström H, Södergren S, Solbrand A et al (2002) Li + ion insertion in TiO 2 (Anatase). 1. Chronoamperometry on CVD films and nanoporous films. J Phys Chem B 101:7710–7716

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Shukla.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, A., Abhilesh, G.N., Tamgadge, R.M. et al. Capacitance of graphene films: effect of the number of layers of the constituent graphene flakes. J Solid State Electrochem 23, 2281–2290 (2019). https://doi.org/10.1007/s10008-019-04344-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04344-z

Keywords

Navigation