Skip to main content

Advertisement

Log in

Varying internal parameters in the thermal silicon oxidation

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Key parameters of the Arrhenius relation governing the oxide growth during the thermal oxidation of silicon have been found to depend on oxide thickness. The activation energy (Ea) has been found to decrease from 2.22 to 1.87 eV with increasing oxide thickness from 6.5 to 13 nm, whereas the reference formation rate R0 of silicon oxide decreases from 24.5 to 20.6 pm/s in the same thickness interval. The combination of these findings gives a linear course of the logarithm of reference rate vs. activation energy. In other words, the reference rate of oxide formation obeys an exponential dependence on activation energy. Calculations give the relation R0 [pm/s] = 0.916 exp. (11.05 Ea), with Ea in eV. The results have been obtained by a four-step-program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Blanc J (1987) The oxidation of silicon by dry oxygen can we distinguish between models? Phil Magaz B 55:685–710

    Article  CAS  Google Scholar 

  2. Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36(12):3770–3778

    Article  CAS  Google Scholar 

  3. Maser K (1971) Bemerkungen zur thermischen Oxydation von Silizium. Z Physik Chem Leipzig 248:42–44

    CAS  Google Scholar 

  4. Gerlach G, Maser K (2016) A self-consistent model for thermal oxidation of silicon at low oxide thickness. Adv Cond Matt Phys 7545:632

    Google Scholar 

  5. Plummer JD, Deal MD, Griffin PB (2000) Silicon LSI Technology. Prentice Hall, Upper Saddle River, esp. pp 319, 322, 327

  6. Nicollian EH, Reisman A (1988) A new model for the thermal oxidation kinetics of silicon. J Electron Mater 17:263–272 esp p 272

  7. Han C-J, Helms CR (1988) 18O tracer study of Si oxidation in dry O2 using SIMS. J Electrochem Soc 135:1824–1832

    Article  CAS  Google Scholar 

  8. Bongiorno A, Pasquarello A (2002) Oxygen diffusion through the disordered oxide network during silicon oxidation. Phys Rev Lett 88:12 59 01

    Article  CAS  Google Scholar 

  9. Bongiorno A, Pasquarello A (2004) Reaction of the oxygen molecule at the Si(100) – SiO2 interface during silicon oxidation. Phys Rev Lett 93:08 61 02

    Article  CAS  Google Scholar 

  10. Bongiorno A, Pasquarello A (2005) Atomic-scale modelling of kinetic processes occurring during silicon oxidation. J Phys Condens Matter 17:S2051

    Article  CAS  Google Scholar 

  11. Li H, Robertson J (2017) Yttrium passivation of defects in GeO2 and GeO2/Ge interfaces. Appl Phys Lett 110:032903

    Article  CAS  Google Scholar 

  12. Gerlach G, Maser K, Saad AM (2009) Activation energy of thermally grown silicon dioxide layers on silicon substrates. Phys Status Solidi B 246:2242–2247

    Article  CAS  Google Scholar 

  13. Maser K (1988) Bergauf-Diffusion des Phosphors im Silizium. Ann Physik Leipzig 500:81–101

    Article  Google Scholar 

  14. Maser K (1991) Die Rolle der Überkreuz-Komponenten beim Dotandentransport im Festkörper. Exp Tech Phys 39:169–180

    CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Gerald Gerlach (TU Dresden) and Professor Fritz Scholz (Universität Greifswald) for fruitful scientific discussions and encouragement for this report, and Dr. Michael Hermes for his help in publishing this paper.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maser, K. Varying internal parameters in the thermal silicon oxidation. J Solid State Electrochem 23, 2589–2593 (2019). https://doi.org/10.1007/s10008-019-04335-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04335-0

Keywords

Navigation