Skip to main content
Log in

In situ X-ray absorption spectroscopy of Sn species adsorbed on platinized platinum electrode in perchloric acid solution containing stannous ions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In situ X-ray absorption spectroscopy (XAS) was applied to investigate the Sn adlayer on platinized (pl-) Pt electrode in deaerated 0.2 M HClO4 solution containing 10−3 M Sn2+ in relation to the effect of Sn addition on electrocatalysis of Pt. A periodical emersion method under potentiostatic polarization, using pl-Pt plate (roughness factor Sr = 770) as a working electrode was employed to detect sensitively the sub-monolayer coverage of Sn on Pt. The Sn K-edge absorption spectra in a scanning XAS mode were measured by monitoring the Sn Kα1 fluorescence line. The Sn K-edge absorption near-edge structure (XANES) has indicated that the Sn species adsorbed on the pl-Pt electrode is partly oxygenated in the Sn-underpotential (UPD) region between − 0.05 and 0.25 V (RHE) which is overlapped with the UPD region of hydrogen. The extended X-ray absorption fine structure (EXAFS) analysis has supported a Sn overlayer model in which Sn atom occupies the hollow site of the nearest neighbor Pt atoms and is further bound with oxygen atoms in the Sn-UPD region. The coordination number of the Sn–Pt bond or Sn–Sn bond decreases with increasing potential, while the coordination number of the Sn–O bond increases reversely. In the potential region between 0.45 and 0.85 V (RHE), the EXAFS analysis has suggested that two-dimensional surface Sn oxide forms on the pl-Pt electrode, which is supported from the potential-pH equilibrium diagram of the Sn/H2O system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Motoo S, Shibata M, Watanabe M (1980) J Electroanal Chem 110(1-3):103–109

    Article  CAS  Google Scholar 

  2. Gasteiger HA, Markovic NM, Ross PN (1995) J Phys Chem 99(22):8945–8949

    Article  CAS  Google Scholar 

  3. Antolini E, Gonzalez ER (2010) Electrochim Acta 56(1):1–14

    Article  CAS  Google Scholar 

  4. Stevanovíc S, Tripkovíc D, Tripkovíc V, Miníc D, Gavrilovíc A, Tripkvíc A, Jovanovíc VM (2014) J Phys Chem C 118(1):278–289

    Article  CAS  Google Scholar 

  5. Motoo S, Watanabe M (1976) J Electroanal Chem 69(3):429–413

    Article  CAS  Google Scholar 

  6. Watanabe M, Furuuchi Y, Motoo S (1985) J Electroanal Chem 191(2):367–375

    Article  CAS  Google Scholar 

  7. Vassiliev YB, Bagotzky VS, Osetrova NV, Mikkailova AA (1979) J Electroanal Chem 97(1):63–76

    Article  Google Scholar 

  8. Sobkowski J, Franaszczuk K, Piasecki A (1985) J Electroanal Chem 196(1):145–156

    Article  CAS  Google Scholar 

  9. Wei ZD, Li LL, Luo YH, Yan C, Sun CX, Yin GZ, Shen PK (2006) J Phys Chem B 110(51):26055–26061

    Article  CAS  PubMed  Google Scholar 

  10. Beden B, Kadirgan F, Lamy C, Leger JM (1981) J Electroanal Chem 127(1-3):75–85

    Article  CAS  Google Scholar 

  11. Haner AN, Ross PN (1991) J Phys Chem 95(9):3740–3746

    Article  CAS  Google Scholar 

  12. Campbell SA, Parson R (1992) J Chem Soc Faraday Trans 88(6):833–841

    Article  CAS  Google Scholar 

  13. Lamy-Pitara E, Quazzani-Benhima EE, Barbier J, Cahoreau M, Caisso J (1994) J Electroanal Chem 372(1-2):233–242

    Article  CAS  Google Scholar 

  14. Janssen MMP, Moolhuysen J (1976) Electrochim Acta 21(11):861–868

    Article  CAS  Google Scholar 

  15. Janssen MMP, Moolhuysen J (1977) J Catal 46(3):289–296

    Article  CAS  Google Scholar 

  16. Wang K, Gasteiger HA, Markovic NM, Ross PN (1996) Electrochim Acta 41(16):2587–2593

    Article  CAS  Google Scholar 

  17. Stamenkovic V, Aren M, Blizanac BB, Mayrhofer KJJ, Ross PN, Markovic NM (2005) Surf Sci 576(1-3):145–157

    Article  CAS  Google Scholar 

  18. Liu Z, Reed D, Kwon G, Shamsuzzoha M, Nikles DE (2007) J Phys Chem C 111(38):14223–14229

    Article  CAS  Google Scholar 

  19. Cathro KJ (1969) J Electrochem Soc 116(11):1608–1611

    Article  CAS  Google Scholar 

  20. Katayama A (1980) J Phys Chem 84(4):376–381

    Article  CAS  Google Scholar 

  21. Schryer DR, Upchurch BT, Van Norman JD, Brown KG, Schryer J (1990) J Catal 122(1):193–197

    Article  CAS  Google Scholar 

  22. Aramata A, Toyoshima I, Enyo M (1992) Electrochim Acta 37(8):1317–1320

    Article  CAS  Google Scholar 

  23. Grass K, Lintz H-G (1997) J Catal 172(2):446–452

    Article  CAS  Google Scholar 

  24. Abruna HD (1991) In: Abruna HD (ed), Modern techniques for in-situ interface charctrerization Electrochemical interfaces chapt 1. Modern techniques for in-situ interface charctrerization. VCH Pub Inc, New York

    Google Scholar 

  25. Bunker G (2010) Introduction to XAFS. A practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Nagy Z (2011) J Solid State Electrochem 15(7-8):1679–1695

    Article  CAS  Google Scholar 

  27. Russell AE, Rose A (2004) Chem Rev 104(10):4613–4635

    Article  CAS  PubMed  Google Scholar 

  28. Meitzner G, Via GH, Lytle FW, Fung SC, Sinfelt JH (1988) J Phys Chem 92(10):2925–2932

    Article  CAS  Google Scholar 

  29. Borgna A, Stagg SM, Resasco DE (1998) J Phys Chem B 102(26):5077–5081

    Article  CAS  Google Scholar 

  30. Pinxt HHCM, Kuster BFM, Koningsberger DC, Martin GB (1998) Catal Today 39(4):351–361

    Article  CAS  Google Scholar 

  31. Mukerjee S, McBreen J (1999) J Electrochem Soc 146(2):600–606

    Article  CAS  Google Scholar 

  32. Roman-Martinez MC, Cazorla-Amoros D, Yamashita H, de Miguel S, Scelza OA (2000) Langmuir 16(3):1123–1131

    Article  CAS  Google Scholar 

  33. Ramallo-Lopez JM, Santori GF, Giovanetti L, Casella ML, Ferretti OA, Requejo FG (2003) J Phys Chem B 107(41):11441–11451

    Article  CAS  Google Scholar 

  34. Melke J, Schoekel A, Dixon D, Cremers C, Ramaker DE, Roth C (2010) J Phys Chem C 114(13):5914–5925

    Article  CAS  Google Scholar 

  35. Inoue T, Tomishige K, Iwasawa Y (1996) J Chem Soc Faraday Trans 92(3):461–467

    Article  CAS  Google Scholar 

  36. Hansen WN, Wang CL, Humpherys TW (1978) J Electroanal Chem 93(2):87–98

    Article  CAS  Google Scholar 

  37. Kolb DM, Hansen WN (1979) Surf Sci 79(1):205–211

    Article  CAS  Google Scholar 

  38. Stefan IC, Scherson DA (2003) J Electroanal Chem 554-555:361–366

    Article  CAS  Google Scholar 

  39. Samant MG, Borges GL, Gordon JG II, Melroy OR, Blum L (1987) J Am Chem Soc 109(20):5970–5974

    Article  CAS  Google Scholar 

  40. Melroy OR, Samant MG, Borges GL, Gordon JG II, Blum L, White JH, Albarelli MJ, MicMillan M, Abruna HD (1988) Langmuir 4(3):728–732

    Article  CAS  Google Scholar 

  41. Tadjeddine A, Tourillon G, Guay D (1991) Electrochim Acta 36(11-12):1859–1862

    Article  CAS  Google Scholar 

  42. Tadjeddine A, Lahrichi A, Tourillon G (1993) J Electroanal Chem 360(1-2):261–270

    Article  CAS  Google Scholar 

  43. Soldo Y, Sibert E, Tourillon G, Hazemann JL, Lévy JP, Aberdam D, Faure R, Durand R (2002) Electrochim Acta 47(19):3081–3091

    Article  CAS  Google Scholar 

  44. Durand R, Faure R, Aberdam D, Salem C, Tourillon G, Guay D, Ladouceur M (1992) Electrochim Acta 37(11):1977–1982

    Article  CAS  Google Scholar 

  45. Lee JRI, O’Malley RL, O’Connell TJ, Vollmer A, Rayment T (2010) Electrochim Acta 55(28):8532–8538

    Article  CAS  Google Scholar 

  46. Seo M, Fushimi K, Aoki Y, Habazaki H, Inaba M, Yokomizo M, Hayakawa T, Nakayama T (2012) J Electroanal Chem 671:7–15

    Article  CAS  Google Scholar 

  47. Seo M, Habazaki H, Inaba M, Yokomizo M, Wakabayashi T, Nakayama T (2014) J Electrochem Soc 161(4):H195–H202

    Article  CAS  Google Scholar 

  48. Feltham AM, Spiro M (1971) Chem Rev 71(2):177–193

    Article  CAS  Google Scholar 

  49. Seo M, Hyono A, Habazaki H, Nakayama T (2014) J Electrochem Soc 161(12):C550–C556

    Article  CAS  Google Scholar 

  50. Du K, Ernst F, Pelsozy MC, Barthel J, Tillmann K (2010) Acta Mater 58(3):836–845

    Article  CAS  Google Scholar 

  51. Gilman S (1964) Electrochim Acta 9(7):1025–1046

    Article  CAS  Google Scholar 

  52. Brummer SB (1965) J Phys Chem 69(2):562–571

    Article  CAS  Google Scholar 

  53. Brummer SB, Ford JI, Turner MJ (1965) J Phys Chem 69(10):3424–3433

    Article  CAS  Google Scholar 

  54. Woods R (1968) Electrochim Acta 13(10):1967–1972

    Article  CAS  Google Scholar 

  55. Biegler T (1969) J Electrochem Soc 116(8):1131–1137

    Article  CAS  Google Scholar 

  56. Kolb DM, Przasnyski M, Gerischer H (1974) J Electroanal Chem 54(1):25–38

    Article  CAS  Google Scholar 

  57. Kolb DM (1978) In: Gerischer H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering vol. Wiley, New York, p 1

    Google Scholar 

  58. Koma A, Yagi K, Tsukada AM (1987) Handbook of surface physics technology. Maruzen, Tokyo

    Google Scholar 

  59. Herrero E, Buller LJ, Abruna HD (2001) Chem Rev 101(7):1897–1930

    Article  CAS  PubMed  Google Scholar 

  60. Ankudinov AL, Ravel B, Rehr JJ, Condrason SD (1998) Phys Rev B 58(12):7565–7576

    Article  CAS  Google Scholar 

  61. Ankudinov AL, Bouldin CE, Rehr JJ, Sim J, Hung H (2002) Phys Rev B 61:104107–104117

    Article  CAS  Google Scholar 

  62. Ku Y, Overbury SH (1992) Surf Sci 373:341–352

    Article  Google Scholar 

  63. Woodruff DP, Vlieg E (2002) In: Woodruff DP (ed) The chemical physics of solid surfaces vol 10. Surface alloys and alloy surfaces,chapt 8. Elsevier Science, Amsterdam

    Google Scholar 

  64. Overbury SH, Ku Y (1992) Phys Rev B 46(12):7868–7872

    Article  CAS  Google Scholar 

  65. Brown D, Quinn PD, Woodruff DP, Bailey P, Noakes CQ (2000) Phys Rev B 61(11):7706–7715

    Article  CAS  Google Scholar 

  66. Overbury SH, Mullins DR, Paffett MT, Koel BE (1991) Surf Sci 254(1-3):45–57

    Article  CAS  Google Scholar 

  67. Li YD, Koel BE (1995) Surf Sci 330(2):193–206

    Article  CAS  Google Scholar 

  68. Woodruff DP, Robinson J (2003) Appl Surf Sci 219(1-2):1–10

    Article  CAS  Google Scholar 

  69. Yoshitake H, Yamazaki O, Ota K (1994) J Electrochem Soc 141(9):2516–2521

    Article  CAS  Google Scholar 

  70. Klimenkov M, Nepijko S, Kuhlenbeck H, Bäumer M, Schlögl R, Freund H-L (1997) Surf Sci 391(1-3):27–36

    Article  CAS  Google Scholar 

  71. Ankudinov AL, Rehr JJ, Low JJ, Bare SR (2002) J Chem Phys 116(5):1911–1919

    Article  CAS  Google Scholar 

  72. Clausen BS, Grabek L, Topse H, Hansen LB, Stoltze P, Norskov JK, Nielsen OH (1993) J Catal 141(2):368–379

    Article  CAS  Google Scholar 

  73. Koningsberger DC, Mojet BL, Van Dorssen GE, Ramaker DE (2003) Top Catal 10:143–155

    Article  Google Scholar 

  74. Monti F (1996) J Synchrotron Radiat 3(3):129–195

    Article  CAS  PubMed  Google Scholar 

  75. Clausen BS, Norskov JK (2000) Top Catal 10(3/4):221–230

    Article  CAS  Google Scholar 

  76. Bus E, Miller JT, Kropf AJ, Prins R, van Bokhoven JA (2006) Phys Chem Chem Phys 8(27):3248–32358

    Article  CAS  PubMed  Google Scholar 

  77. Sanson A (2009) J Synchrotron Radiat 16(6):864–868

    Article  CAS  PubMed  Google Scholar 

  78. Dalba G, Fornasini P, Rocca F (1993) Phys Rev B 47:8501–8514

    Article  Google Scholar 

  79. Nakamura M, Imai R, Otsuka N, Hoshi N, Sakata O (2013) J Phys Chem C 117(35):18139–18143

    Article  CAS  Google Scholar 

  80. Pourbaix M (1979) Atlas of electrochemical equilibria in aqueous solutions. NACE, Houston, pp 475–484

    Google Scholar 

Download references

Acknowledgments

The XAS measurements were performed at the BL16B2 beam line of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2012A5320, 2012B5320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Seo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, M., Habazaki, H., Inaba, M. et al. In situ X-ray absorption spectroscopy of Sn species adsorbed on platinized platinum electrode in perchloric acid solution containing stannous ions. J Solid State Electrochem 23, 2261–2275 (2019). https://doi.org/10.1007/s10008-019-04326-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04326-1

Keywords

Navigation