Abstract
The detection of hydrogen peroxide (H2O2) is essential due to its extensive application in bio-medical and environment. Herein, we synthesized a novel polyethyleneimine-Au nanoparticle-copper protoporphyrin (PEI-AuNPs-CuPP) nanocomposite toward H2O2 detection. Ultraviolet-visible spectrometry (UV-vis), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) were used to characterize this nanomaterial. Analytical performance of this proposed sensor was evaluated through differential pulse voltammetry (DPV) and cyclic voltammetry (CV). It was found surprisingly that the PEI-AuNPs-CuPP-based sensor exhibited sensing for H2O2 with a detection limit of 91.74 aM. In addition, this sensor displayed superb selectivity in the presence of dopamine (DA), ascorbic acid (AA), uric acid (UA), and glucose (Glu), which held satisfactory analytical performance for the detection of H2O2 in human serum samples, indicating a promising application in biological sample analysis.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Tian Z, Huang W, Xu BR, Li XL, Mei YF (2018) Nano Lett 18(6):3688–3694
Kong JM, Yu XH, Hu WW, Hu Q, Shui SL, Li LZ, Han XJ, Xie HF, Zhang XJ, Wang TH (2015) Analyst 140(22):7792–7798
Haugner JC, Seelig B (2013) Chem Commun 49(66):7322–7324
Shahamirifard SA, Ghaedi M, Razmi Z, Hajati S (2018) Biosens Bioelectron 114:30–36
Gao XH, He SJ, Zhang CM, Du C, Chen X, Xing W, Chen SL, Clayborne AD, Chen W (2016) Adv Sci 3:1–7
Liu MM, Liu R, Chen W (2013) Biosens. Bioelectron 45:206–212
Reed JH, Shi YL, Zhu QH, Chakraborty S, Mirts EN, Petrik ID, Bhagi-Damodaran A, Ross M, Moenne-Loccoz P, Zhang Y, Lu Y (2017) J Am Chem Soc 139(35):12209–12218
Li JF, Peng Q, Oliver AG, Alp EE, Hu MY, Zhao JY, Sage JT, Scheidt WR (2014) J Am Chem Soc 136(52):18100–18110
Gottfried JM (2015) Surf Sci Rep 70(3):259–379
Buchler JW, Smith PD (1974) Angew Chem 13(11):745–745
Barnett BR, Evans AL, Roberts CC, Fritsch JM (2011) Chemosphere 82(4):592–596
Collman JP, Kaplun M, Decreau RA (2006) Dalton Trans 4:554–559
Apaydin DH, Seelajaroen H, Pengsakul O, Thamyongkit P, Sariciftci NS, Kunze-Liebhauser J, Portenkirchner E (2018) ChemCatChem 10(8):1793–1797
Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, Traversa E, McGinnis JF, Self WT (2015) Environ Sci Nano 2(1):33–53
Ju J, Chen W (2015) Anal. Chem 87(3):1903–1910
de la Rica R, Stevens MM (2012) Nat Nanotechnol 7(12):821–824
Hu M, Tian J, Lu HT, Weng LX, Wang LH (2010) Talanta 8:997–1002
Mvango S, Mashazi P (2019) Mat Sci Eng C-Mater 96:814–823
Zhang CM, Li L, Ju J, Chen W (2016) Electrochim Acta 210:181–189
Dos Santos Pereira T, Mauruto de Oliveira GC, Santos FA, Raymundo-Pereira PA, Oliveira ONJ, Janegitz BC (2019) Talanta 194:737–744
Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Nat Rev Mol Cell Biol 8(9):722–728
Laloi C, Apel K, Danon A (2004) Curr Opin Plant Biol 7(3):323–328
Dehhaghi M, Tan V, Heng B, Mohammadipanah F, Guillemin GJ (2018) Neuroscience 399:1–11
Rao MS, Rao AR, Ramana KV, Sagi SR (1990) Talanta 37(7):753–755
Mori I, Takasaki K, Fujita Y, Matsuo T (1998) Talanta 47(3):631–637
Jie N, Yang J, Huang X, Zhang R, Song Z (1995) Talanta 42(11):1575–1579
Li LL, Wang YQ, Pan LJ, Shi Y, Cheng W, Shi Y, Yu GH (2015) Nano Lett 15(2):1146–1151
Tolstoy VP, Gulina LB, Golubeva AA, Ermakov SS, Gurenko VE, Navolotskaya DV, Vladimirova NI, Koroleva AV (2019) J Solid State Electrochem 23(2):573–582
Nikolaev KG, Maybeck V, Neumann E, Ermakov SS, Ermolenko YE, Offenhausser A, Mourzina YG (2018) J Solid State Electrochem 22(4):1023–1035
Yu Z, Park Y, Chen L, Zhao B, Jung YM, Cong Q (2015) ACS Appl Mater Interfaces 7(42):23472–23480
Cheng CF, Zhang CM, Gao XH, Zhuang ZH, Du C, Chen W (2018) Anal Chem 90(3):1983–1991
Zhang CM, Zhang RZ, Gao XH, Cheng CF, Hou L, Li XK, Chen W (2018) ACS Omega 3(1):96–105
Kadiyala NK, Mandal BK, Ranjan S, Dasgupta N (2018) Mat Sci Eng C-Mater 93:191–205
Kohout C, Santi C, Polito L (2018) Int J Mol Sci 19(11):3385
Otero TF, Martinez Soria LX, Schumacher J, Valero L, Pascual VH (2017) Chem Open 6(1):25–32
Tasbandi A, Koushki E, Eshghi H (2017) Opt Quant Electron 49:124–134
Panwar V, Jain SL (2019) Am J Mater Sci Eng 99:191–201
Ravichandran S, Nagarajan S, Kokil A, Ponrathnam T, Bouldin RM, Bruno FF, Samuelson L, Kumar J, Nagarajan R (2012) Langmuir 2:13380–13386
Zou J, Zhao GQ, Teng J, Liu Q, Jiang XY, Jiao FP, Yu JG (2019) Microchem 145:693–702
Fagadar-Cosma E, Sebarchievici I, Lascu A, Creanga I, Palade A, Birdeanu M, Fagadar-Cosma G (2016) J Alloys Compd 686:896–904
Zhang GY, Deng SY, Zhang XJ, Shan D (2016) Electrochim Acta 190:64–68
Balamurugan J, Thanh TD, Karthikeyan G, Kim NH, Lee JH (2017) Biosens Bioelectron 89:970–977
Ran G, Yi WJ, Li Y, Luo HQ, Li NB (2012) Methods 4:2929–2934
Funding
This work was supported by two funds: the National Natural Science Foundation of China (21575066) and Science and Technology Research Projects of Henan province (no. 162102310462).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, Y., Guo, Z., Hao, L. et al. Polyethyleneimine-AuNPs-copper protoporphyrin nanocomposite: a novel biosensor for sensitive detection of hydrogen peroxide in human serum. J Solid State Electrochem 23, 2551–2558 (2019). https://doi.org/10.1007/s10008-019-04322-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10008-019-04322-5