Skip to main content
Log in

Hydrothermal microwave-assisted synthesis of Li3VO4 as an anode for lithium-ion battery

Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li3VO4 with various morphologies has been synthesized by a microwave-assisted hydrothermal method. It is shown that the crystal size and morphology of Li3VO4 are determined by the type of solvent in the reaction solution and possible reasons of the solvent-type effect are discussed. Electrochemical studies of as-prepared Li3VO4 as anode materials for Li-ion batteries demonstrate a clear influence of the materials’ morphology and surface properties on the electrochemical performance. Li3VO4 nanocrystals with a porous structure exhibit an enhanced electrochemical activity with an initial discharge capacity of 163 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Zhao B, Ran R, Liu M, Shao Z (2015) Mater Sci Eng R 98:1–71

    Article  Google Scholar 

  2. Aravindan V, Lee Y-S, Madhavi S (2015) Adv Energy Mater 5(13):1402225

    Article  CAS  Google Scholar 

  3. Liu Y, Yang Y (2016) J Nanomater 2016:8123652

    Google Scholar 

  4. Croguennec L, Palacin MR (2015) J Am Chem Soc 137(9):3140–3156

    Article  CAS  PubMed  Google Scholar 

  5. Eftekhari A (2017) Energy Storage Mater 7:157–180

    Article  Google Scholar 

  6. Xu Y, Wang L, Jia W, Yu Y, Zhang R, Li T, Fu X, Niu X, Li J, Kang Y (2019) Electrochim Acta 301:251–257

    Article  CAS  Google Scholar 

  7. Zhu G-N, Wang Y-G, Xia Y-Y (2012) Energy Environ Sci 5(5):6652–6667

    Article  CAS  Google Scholar 

  8. Wang L, Wang F, Zhu J, Zhang X, Tang Y, Wang X (2018) Ceram Int 44(2):1296–1303

    Article  CAS  Google Scholar 

  9. Chen Z, Belharouak I, Sun Y-K, Amine K (2013) Adv Funct Mater 23(8):959–969

    Article  CAS  Google Scholar 

  10. Song T, Paik U (2016) J Mater Chem A 4(1):14–31

    Article  CAS  Google Scholar 

  11. Wang Z, Zhang F, Xing H, Gu M, An J, Zhai B, Ana Q, Yu C, Li G (2017) Electrochim Acta 243:112–118

    Article  CAS  Google Scholar 

  12. Xu J, Jia C, Cao B, Zhang WF (2007) Electrochim Acta 52(28):8044–8047

    Article  CAS  Google Scholar 

  13. Mo J, Zhang X, Liu J, Yu J, Wang Z, Liu Z, Yuan X, Zhou C, Li R, Wu X, Wu Y (2017) Chin J Chem 35(12):1789–1796

    Article  CAS  Google Scholar 

  14. Li H, Liu X, Zhai T, Li D, Zhou H (2013) Adv Energy Mater 3(4):428–432

    Article  CAS  Google Scholar 

  15. Ni S, Zhang J, Ma J, Yang X, Zhang L, Li X, Zeng H (2016) Adv Mater Interfaces 3(1):1500340

    Article  CAS  Google Scholar 

  16. Wang F, Liu Z, Yuan X, Mo J, Li C, Fu L, Zhu Y, Wu X, Wu Y (2017) J Mater Chem A 5(28):14922–14929

    Article  CAS  Google Scholar 

  17. Li Q, Wei Q, Sheng J, Yan M, Zhou L, Luo W, Sun R, Mai L (2015) Adv Sci 2(12):1500284

    Article  CAS  Google Scholar 

  18. Shen L, Chen S, Maier J, Yu Y (2017) Adv Mater 29(33):1701571

    Article  CAS  Google Scholar 

  19. Shi Y, Wang J-Z, Chou S-L, Wexler D, Li H-J, Ozawa K, Liu H-K, Wu Y-P (2013) Nano Lett 13(10):4715–4720

    Article  CAS  PubMed  Google Scholar 

  20. Kim W-T, Jeong YU, Lee YJ, Kim YJ, Song JH (2013) J Power Sources 244:557–560

    Article  CAS  Google Scholar 

  21. Liao C, Wen Y, Shan B, Zhai T, Li H (2017) J Power Sources 348:48–56

    Article  CAS  Google Scholar 

  22. Yang G, Zhang B, Feng J, Lu Y, Wang Z, Aravindan V, Aravind M, Liu J, Srinivasan M, Shen Z, Huang Y (2018) J Mater Chem A 6:456–463

    Article  CAS  Google Scholar 

  23. Ni S, Lv X, Ma J, Yang X, Zhang L (2014) J Power Sources 248:122–129

    Article  CAS  Google Scholar 

  24. Shi Y, Gao J, Abruña HD, Li H-J, Liu H-K, Wexler D, Wang J-Z, Wu Y (2014) Chem Eur J 20(19):5608–5612

    Article  CAS  PubMed  Google Scholar 

  25. Tartaj P, Amarilla JM, Vazquez-Santos MB (2016) Chem Mater 28(3):986–993

    Article  CAS  Google Scholar 

  26. Song X, Jia M, Chen R (2002) J Mater Process Technol 120(1-3):21–25

    Article  CAS  Google Scholar 

  27. Du C, Wu J, Liu J, Yang M, Xu Q, Tang Z, Zhang X (2015) Electrochim Acta 152:473–479

    Article  CAS  Google Scholar 

  28. Li Q, Wei Q, Wang Q, Luo W, An Q, Xu Y, Niu C, Tang C, Mai L (2015) J Mater Chem A 3(37):18839–18842

    Article  CAS  Google Scholar 

  29. Zakharova GS, Ottmann A, Ehrstein B, Klingeler R (2016) Mater Res Bull 83:225–229

    Article  CAS  Google Scholar 

  30. Ottmann A, Zakharova GS, Ehrstein B, Klingeler R (2015) Electrochim Acta 174:682–687

    Article  CAS  Google Scholar 

  31. Yang G, Feng J, Zhang B, Aravindan V, Peng D, Cao X, Yu H, Madhavi S, Huang Y (2017) Int J Hydrog Energy 42(34):22167–22174

    Article  CAS  Google Scholar 

  32. Xu L, Hu Y-L, Pelligra C, Chen C-H, Jin L, Huang H, Sithambaram S, Aindow M, Joesten R, Suib SL (2009) Chem Mater 21(13):2875–2885

    Article  CAS  Google Scholar 

  33. Lide DR (2004-2005) Handbook of chemistry and physics. CRC Press, New York

    Google Scholar 

  34. Chen H-I, Chang H-Y (2004) Colloids Surf A Physicochem Eng Asp 242(1-3):61–69

    Article  CAS  Google Scholar 

  35. Ostwald W (1900) Z Phys Chem 34:495–503

    Google Scholar 

  36. Biswas S, Kar S, Chaudhuri S (2007) Mater Sci Eng B 142(2-3):69–77

    Article  CAS  Google Scholar 

  37. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure App Chem:603–619

  38. Sun P, Wang W, Liu Y, Sun Y, Ma J, Lu G (2012) Sensors Actuators B 173:52–57

    Article  CAS  Google Scholar 

  39. Zhou L, Shen S, Peng X, Wu L, Wang Q, Shen C, Tu T, Huang L, Li J, Sun S (2016) ACS Appl Mater Interfaces 8(36):23739–23745

    Article  CAS  PubMed  Google Scholar 

  40. Iwama E, Kawabata N, Nishio N, Kisu K, Miyamoto J, Naoi W, Rozier P, Simon P, Naoi K (2016) ACS Nano 10(5):5398–5404

    Article  CAS  PubMed  Google Scholar 

  41. Ottmann A, Scholz M, Haft M, Thauer E, Schneider P, Gellesch M, Nowka C, Wurmehl S, Hampel S, Klingeler R (2017) Sci Rep 7:23914

    Article  CAS  Google Scholar 

  42. Shao G, Gan L, Ma Y, Li H, Zhai T (2015) J Mater A 3:11253–11260

    CAS  Google Scholar 

  43. Zhang C, Liu C, Nan X, Song H, Liu Y, Zhang C, Cao G (2016) ACS Appl Mater Interfaces 8(1):680–688

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Lu P-J, Liang S, Liu J, Wang W, Lei M, Tang S, Yang Q (2015) Nano Energy 12:709–724

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank I. Glass for experimental support.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft through project KL 1824/14-1. G.Z. acknowledges support of the state order via the Ministry of Science and High Education of Russia. E.T. acknowledges support by the BMWi through project 03ET6095C (HiKoMat).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Zakharova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, G.S., Thauer, E., Wegener, S.A. et al. Hydrothermal microwave-assisted synthesis of Li3VO4 as an anode for lithium-ion battery. J Solid State Electrochem 23, 2205–2212 (2019). https://doi.org/10.1007/s10008-019-04315-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04315-4

Keywords

Navigation