Journal of Solid State Electrochemistry

, Volume 23, Issue 7, pp 2181–2193 | Cite as

Eco-friendly biopolymer electrolyte, pectin with magnesium nitrate salt, for application in electrochemical devices

  • S. Kiruthika
  • M. Malathi
  • S. SelvasekarapandianEmail author
  • K. Tamilarasan
  • V. Moniha
  • R. Manjuladevi
Original Paper


Current research on electrochemical device application focuses on the usage of biopolymers like chitosan, pectin, agar-agar, cellulose acetate, and carrageenan as the electrolyte. The present work deals with the study of an eco-friendly biopolymer electrolyte pectin with magnesium nitrate salt Mg(NO3)2 prepared by solution casting technique. The prepared biopolymer electrolytes were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), AC impedance analysis, and linear sweep voltammetry (LSV). XRD analysis has been used to confirm the amorphous nature of the biopolymer pectin and magnesium nitrate salt. FTIR analysis has been used to confirm the complex formation between the polymer and the salt. DSC analysis has been used to find the glass transition temperature (Tg) of the prepared biopolymer electrolytes. AC impedance analysis has been used to study the electrical characterization of the prepared biopolymer electrolytes. The biopolymer electrolyte 50 M.wt% pectin:50 M.wt% Mg(NO3)2 has the highest ionic conductivity in the order of 10−4 S cm−1. The total ionic transference number of the highest conducting sample is 0.97 and the transference number of Mg2+ ion is 0.29. LSV has been used to find the electrochemical stability of the biopolymer electrolytes. The electrochemical stability of 50 M.wt% pectin:50 M.wt% Mg(NO3)2 is 3.8 V. This biopolymer electrolyte has been used to construct magnesium ion battery and the battery performance has been studied.


Biopolymer pectin Magnesium nitrate Solution casting technique XRD AC impedance analysis 



  1. 1.
    Liu W, Lin D, Sun J, Zhou G, Cui Y (2016) Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10(12):11407–11413CrossRefGoogle Scholar
  2. 2.
    Zulkefli FN, Navaratnam S, Ahmad AH (2015) Proton conducting biopolymer electrolytes based on starch incorporated with ammonium thiocyanate. Adv Mater Res 1112:275–278CrossRefGoogle Scholar
  3. 3.
    Hemalatha R, Radha KP, Jesintha Leema Rose 004D (2016) AC impedance, FTIR studies of biopolymer electrolyte potato starch: NH4SCN. Int J Multidiscip Educ Res 1:01–03Google Scholar
  4. 4.
    Rani M, Rudhziah S, Ahmad A, Mohamed N (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6(9):2371–2385CrossRefGoogle Scholar
  5. 5.
    Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, Vinoth pandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47CrossRefGoogle Scholar
  6. 6.
    Sohaimy MIH, Isa MIN (2017) Ionic conductivity and conduction mechanism studies on cellulose based solid polymer electrolytes doped with ammonium carbonate. Polym Bull 74(4):1371–1386CrossRefGoogle Scholar
  7. 7.
    Selvalakshmi S, Vijaya N, Selvasekarapandian S, Premalatha M (2017) Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci 134:44702CrossRefGoogle Scholar
  8. 8.
    Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2016) Proton-conducting I-carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780CrossRefGoogle Scholar
  9. 9.
    Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277CrossRefGoogle Scholar
  10. 10.
    Srivastava P, Malviya R (2011) Sources of pectin, extraction and its applications in pharmaceutical industry—an overview. Indian J Nat Prod Resour 2:10–18Google Scholar
  11. 11.
    Shendge RS, Jamdhade AA, Pande VV (2014) Novel strategy in controlled gastroretentive drug delivery: in-situ floating gel. Int J Drug Deliv 6:230–243Google Scholar
  12. 12.
    Kavitha S, Vijaya N, Pandeeswari R, Premalatha M (2016) Vibrational, electrical and optical studies on pectin-based polymer electrolyte. Int Res J Eng Tech 3:1385–1390Google Scholar
  13. 13.
    Perumal P, Christopher Selvin P, Selvasekarapandian S (2018) Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices. Ionics 24(10):3259–3270CrossRefGoogle Scholar
  14. 14.
    Vijaya N, Selvasekarapandian S, Sornalatha M, Sujithra KS, Monisha S (2016) Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X=Cl, Br). Ionics 23:2799–2808CrossRefGoogle Scholar
  15. 15.
    Muthukrishnan M, Shanthi C, Selvasekarapandian S, Manjuladevi R, Perumal P, Chrishtopher Selvin P (2018) Synthesis and characterization of pectin-based biopolymer electrolyte for electrochemical applications. Ionics. 25(1):203–214. CrossRefGoogle Scholar
  16. 16.
    Mendes JP, Esperança JMSS, Medeiros MJ, Pawlicka A, Silva MM (2017) Structural, morphological, ionic conductivity, and thermal properties of pectin-based polymer electrolytes. Mol Cryst Liq Cryst 643(1):266–273CrossRefGoogle Scholar
  17. 17.
    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265CrossRefGoogle Scholar
  18. 18.
    Pandey GP, Agrawal RC, Hashmi SA (2009) Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide. J Power Sources 190(2):563–572CrossRefGoogle Scholar
  19. 19.
    Sharma J, Hashmi S (2018) Magnesium ion-conducting gel polymer electrolyte nanocomposites: effect of active and passive nanofillers. Polym Compos 40(4):1295–1306. CrossRefGoogle Scholar
  20. 20.
    Ramaswamy M, Malayandi T, Subramanian S, Srinivasalu J, Rangaswamy M, Soundararajan V (2017) Development and study of solid polymer electrolyte based on polyvinyl alcohol: Mg(ClO4)2. Ploys Plast Technol Eng 56(9):992–1002CrossRefGoogle Scholar
  21. 21.
    Kumar Y, Hashmi SA, Pandey GP (2011) Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte. Electrochim Acta 56(11):3864–3873CrossRefGoogle Scholar
  22. 22.
    Shanmuga Priya S, Karthika M, Selvasekarapandian S, Manjuladevi R, Monisha S (2018) Study of biopolymer I-carrageenan with magnesium perchlorate. Ionics 24(12):3861–3875CrossRefGoogle Scholar
  23. 23.
    Manjuladevi R, Selvasekarapandian S, Thamilselvan M, Mangalam R, Monisha S, Selvin PC (2018) A study on blend polymer electrolyte based on poly(vinyl alcohol)-poly (acrylonitrile) with magnesium nitrate for magnesium battery. Ionics 24(11):3493–3506CrossRefGoogle Scholar
  24. 24.
    Sharma J, Hashmi SA (2018) Plastic crystal-incorporated magnesium ion conducting gel polymer electrolyte for battery application. Bull Mater Sci 41(6):147CrossRefGoogle Scholar
  25. 25.
    Jia X, Yang Y, Wang C, Zhao C, Vijayaraghavan R, MacFarlane DR, Wallace GG (2014) Biocompatible ionic liquid–biopolymer electrolyte-enabled thin and compact magnesium–air batteries. ACS Appl Mater Interfaces 6(23):21110–21117CrossRefGoogle Scholar
  26. 26.
    Andrade JR, Raphael E, Pawlicka A (2009) Plasticized pectin-based gel electrolytes. Electrochim Acta 54(26):6479–6483CrossRefGoogle Scholar
  27. 27.
    Leones R, Botelho MBS, Sentanin F, Cesarino I, Pawlicka A, Camargo ASS, Silva MM (2014) Pectin-based polymer electrolytes with Ir(III) complexes. Mol Cryst Liq Cryst 604(1):117–125CrossRefGoogle Scholar
  28. 28.
    Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37(8):1371–1376CrossRefGoogle Scholar
  29. 29.
    Sikkanthar S, Karthikeyan S, Selvasekarapandian S, Pandi DV, Nithya S, Sanjeeviraja C (2014) Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem 19:987–999CrossRefGoogle Scholar
  30. 30.
    Sridevi D, Rajendran KV (2009) Synthesis and optical characteristics of ZnO nanocrystals. Bull Master Sci 32(2):165–168CrossRefGoogle Scholar
  31. 31.
    Vij A, Chawla AK, Kumar R, Lochab SP, Chandra R, Singh N (2010) Effect of 120 MeVAg9+ ion beam irradiation on the structure and photoluminescence of SrS:Ce nanostructures. Phys B 405(11):2573–2576CrossRefGoogle Scholar
  32. 32.
    Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481:424–434CrossRefGoogle Scholar
  33. 33.
    Sutar PB, Mishra RK, Pal K, Banthia AK (2007) Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J Mater Sci Mater Med 19:2247–2253CrossRefGoogle Scholar
  34. 34.
    Maciel VBV, Yoshida CMP, Franco TT (2015) Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr Polym 132:537–545CrossRefGoogle Scholar
  35. 35.
    Mishra RK, Sutar PB, Singhal JP, Banthia AK (2007) Graft copolymerization of pectin with polyacrylamide. Polym Plast Technol Eng 46(11):1079–1085CrossRefGoogle Scholar
  36. 36.
    Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Christopher Selvin P, Mangalam R, Monisha S (2017) Preparation and characterization of blend polymer electrolyte film based on poly(vinyl alcohol)-poly(acrylonitrile)/MgCl2 for energy storage devices. Ionics 24:1083–1095CrossRefGoogle Scholar
  37. 37.
    Nirmala Devi G, Chitra S, Selvasekarapandian S, Premalatha M, Monisha S, Saranya J (2017) Synthesis and characterization of dextrin-based polymer electrolytes for potential applications in energy storage devices. Ionics 23(12):3377–3388CrossRefGoogle Scholar
  38. 38.
    Premalatha M, Vijaya N, Selvasekarapandian S, Selvalakshmi S (2016) Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22(8):1299–1310CrossRefGoogle Scholar
  39. 39.
    Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater Sci Eng B 85(1):11–15CrossRefGoogle Scholar
  40. 40.
    Boukamp BA (1986) A non-linear lease square fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20(1):31–44CrossRefGoogle Scholar
  41. 41.
    Teeters D, Neuman RG, Tate BD (1996) The concentration behavior of lithium triflate at the surface of polymer electrolyte materials. Solid State Ionics 85(1-4):239–245CrossRefGoogle Scholar
  42. 42.
    Ross Macdonald J (1992) Impedance spectroscopy. Ann Biomed Eng 20(3):289–305CrossRefGoogle Scholar
  43. 43.
    Adachi K, Urakawa O (2002) Dielectric study of concentration fluctuations in concentrated polymer solutions. J Non-Cryst Solids 307:667–670CrossRefGoogle Scholar
  44. 44.
    Wagner JB, Wagner C (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26(6):1597–1601CrossRefGoogle Scholar
  45. 45.
    Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328CrossRefGoogle Scholar
  46. 46.
    Boukamp BA (1986) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20(1):31–44CrossRefGoogle Scholar
  47. 47.
    Boukamp BA (1986) A package for impedance/admittance data analysis. Solid State Ionics 18:136–140CrossRefGoogle Scholar
  48. 48.
    Reddy CVS, Sharma AK, Rao VN (2003) Conductivity and discharge characteristics of polyblend (PVP+ PVA+ KIO3) electrolyte. J Power Sources 114(2):338–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. Kiruthika
    • 1
    • 2
  • M. Malathi
    • 1
  • S. Selvasekarapandian
    • 2
    • 3
    Email author
  • K. Tamilarasan
    • 1
  • V. Moniha
    • 2
    • 4
  • R. Manjuladevi
    • 5
  1. 1.Kongu Engineering CollegePerunduraiIndia
  2. 2.Materials Research CenterCoimbatoreIndia
  3. 3.Department of PhysicsBharathiar UniversityCoimbatoreIndia
  4. 4.Centre for Research and Post Graduate Studies in PhysicsAyya Nadar Janaki Ammal CollegeSivakasiIndia
  5. 5.Department of PhysicsSNS College of EngineeringCoimbatoreIndia

Personalised recommendations