Skip to main content

Advertisement

Log in

Electrocatalysis of polysulfide conversion via sulfur–cobalt CoS2 on a carbon nanotube surface as a cathode for high-performance lithium–sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium–sulfur batteries received intense attention because of their high-energy density and inexpensive active material. However, the poor electrical conductivity of sulfur, shuttle effect, and slow electrochemical kinetics hinder their application. Herein, cobalt disulfides uniformly in situ grow on the surface of carbon nanotubes to prepare a three-dimensional carbon nanotubes-cobalt disulfide composite material as the sulfur host. The in situ growth cobalt disulfides on the carbon nanotube is confirmed to play the role of electrocatalyst, triggering the oxidation reaction of Li2S6 and Li2S4 at a higher potential, which promotes the conversion of Li2S6 to Li2S4 and Li2S4 to Li2S2, respectively, and significantly enhances the electrochemical reaction kinetics during the charge and discharge process. Particularly, the carbon nanotubes-cobalt disulfide-20 composite provides a suitable number of active sites for Li2S6 and Li2S4 and exerts an initial discharge capacity of 1253 mA h g−1 at 0.1 C and a retentive capacity of 84% after 200 cycles at 0.2 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nitta N, Wu F, Lee JT, Yushin G (2015) Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  2. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  3. Pang Q, Liang X, Kwok CY, Nazar LF (2016) Nat Energy 1(9):16132

    Article  CAS  Google Scholar 

  4. Zhang G, Zhang ZW, Peng HJ, Huang JQ, Zhang Q (2017) Small Methods 1(7):1700134

    Article  CAS  Google Scholar 

  5. Zhang SS (2013) J Power Sources 231:153–162

    Article  CAS  Google Scholar 

  6. Agubra VA, Zuniga L, Flores D, Villareal J, Alcoutlabi M (2016) Electrochim Acta 192:529–550

    Article  CAS  Google Scholar 

  7. He JR, Chen Y, Manthiram A (2018) Energy Environ Sci 11(9):2560–2568

    Article  CAS  Google Scholar 

  8. Ai W, Zhou W, Du Z, Chen Y, Sun Z, Wu C, Zou C, Li C, Huang W, Yu T (2017) Energy Storage Mater 6:112–118

    Article  Google Scholar 

  9. Chen T, Ma L, Cheng B, Chen R, Hu Y, Zhu G, Wang Y, Liang J, Tie Z, Liu J (2017) Nano Energy 38:239–248

    Article  CAS  Google Scholar 

  10. Barchasz C, Leprêtre JC, Alloin F, Patoux S (2012) J Power Sources 199:322–330

    Article  CAS  Google Scholar 

  11. Ma X, Ning G, Wang Y, Song X, Xiao Z, Hou L, Yang W, Gao J, Li Y (2018) Electrochim Acta 269:83–92

    Article  CAS  Google Scholar 

  12. Zhang Y, Duan X, Wang J, Wang C, Wang J (2018) J Power Sources 376:131–137

    Article  CAS  Google Scholar 

  13. Zhou G, Paek E, Hwang GS (2015) Nat Commun 6(1):7760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lei T, Chen W, Lv W, Huang J, Zhu J, He W, Xiong J, Duan X (2018) Joule 2(10):2091–2104

    Article  CAS  Google Scholar 

  15. Papandrea B, Xu X, Xu Y, Chen CY, Lin Z, Wang G, Luo Y, Liu M, Huang Y, Mai L, Duan X (2016) Nano Res 9(1):240–248

    Article  Google Scholar 

  16. Zhou G, Sun J, Jin Y, Chen W, Zu C, Zhang R, Qiu Y, Zhao J, Zhuo D, Liu Y, Tao X, Liu W, Yan K, Lee HR, Cui Y (2017) Adv Mater 29(12):1603366

    Article  CAS  Google Scholar 

  17. Fan M, An Y, Yin H, Sun W, Lin Z (2018) J Solid State Electrochem 22(3):667–675

    Article  CAS  Google Scholar 

  18. Pei F, Lin L, Ou D, Zheng Z, Mo S, Fang X, Zheng N (2017) Nat Commun 8(1):482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C, Liu S, Qiu J, Lou XW (2014) Nat Commun 5(1):5002

    Article  CAS  PubMed  Google Scholar 

  20. Liang X, Rangom Y, Kwok CY, Pang Q, Nazar LF (2017) Adv Mater 29(3):1603040

    Article  CAS  Google Scholar 

  21. Xu G, Kushima A, Yuan J, Dou H, Xue W, Zhang X, Yan X, Li J (2017) Energy Environ Sci 10(12):2544–2551

    Article  CAS  Google Scholar 

  22. Fang R, Li G, Zhao S, Yin L, Du K, Hou P, Wang S, Cheng HM, Liu C, Li F (2017) Nano Energy 42:205–214

    Article  CAS  Google Scholar 

  23. Zhou GM (2017) Design, fabrication and electrochemical performance of nanostructured carbon based materials for high-energy lithium–sulfur batteries. Springer, Singapore

    Book  Google Scholar 

  24. Hwang JY, Kim HM, Shin S, Sun YK (2018) Adv Funct Mater 28(3):1704294

    Article  CAS  Google Scholar 

  25. Zhang Z, Kong LL, Liu S, Li GR, Gao XP (2017) Adv Energy Mater 7(11):1602543

    Article  CAS  Google Scholar 

  26. Kong W, Yan L, Luo Y, Wang D, Jiang K, Li Q, Fan S, Wang J (2017) Adv Funct Mater 27(18):1606663

    Article  CAS  Google Scholar 

  27. Wang QQ, Huang JB, Li GR, Lin Z, Liu BH, Li ZP (2017) J Power Sources 339:20–26

    Article  CAS  Google Scholar 

  28. Geng X, Yi R, Yu Z, Zhao C, Li Y, Wei Q, Liu C, Zhao Y, Lu B, Yang L (2018) J Mater Sci Mater Electron 29:10071–10081

    Article  CAS  Google Scholar 

  29. He JR, Chen YF, Li PJ, Fu F, Wang ZG, Zhang WL (2015) J Mater Chem A 3(36):18605–18610

    Article  CAS  Google Scholar 

  30. Zhong Y, Xia X, Deng S, Zhan J, Fang R, Xia Y, Wang X, Zhang Q, Tu J (2018) Adv Energy Mater 8(1):1701110

    Article  CAS  Google Scholar 

  31. Su YS, Manthiram A (2012) Nat Commun 3(1):1166

    Article  PubMed  Google Scholar 

  32. Li Y, Fan J, Zhang J, Yang J, Yuan R, Chang J, Zheng M, Dong Q (2017) ACS Nano 11(11):11417–11424

    Article  CAS  PubMed  Google Scholar 

  33. Su WX, Feng WJ (2018) Int J Electrochem Sci 13:6005–6014

    Article  CAS  Google Scholar 

  34. Ai G, Dai Y, Mao W, Zhao H, Fu Y, Song X, En Y, Battaglia VS, Srinivasan V, Liu G (2016) Nano Lett 16(9):5365–5372

    Article  CAS  PubMed  Google Scholar 

  35. Deng Z, Zhang Z, Lai Y, Liu J, Li J, Liu Y (2013) J Electrochem Soc 160(4):A553–A558

    Article  CAS  Google Scholar 

  36. He JR, Liu L, Chen YF, Arumugam M (2017) Adv Mater 29(34):1702707

    Article  CAS  Google Scholar 

  37. Yuan G, Jin H, Jin Y, Wu L (2018) J Solid State Electrochem 22(3):693–703

    Article  CAS  Google Scholar 

  38. Liang C, Zhang X, Zhao Y, Tan T, Zhang Y (2019) J Solid State Electrochem 23(2):565–572

    Article  CAS  Google Scholar 

  39. Peng HJ, Zhang G, Chen X, Zhang ZW, Xu WT, Huang JQ, Zhang Q (2016) Angew Chem 128(42):13184–13189

    Article  Google Scholar 

  40. He JR, Chen YF, Lv WQ, Wen KC, Xu C, Zhang WL (2016) ACS Nano 10(12):10981–10987

    Article  CAS  PubMed  Google Scholar 

  41. He JR, Liu L, Chen YF, Arumugam M (2018) iScience 4:36–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou GM, Tian HZ, Jin Y, Tao XY, Liu BF, Zhang RF, Cui Y (2017) PNAS 114(5):840–845

    Article  CAS  PubMed  Google Scholar 

  43. He JR, Hartmann G, Lee M, Hwang GS, Chen YF, Manthiram A (2019) Energy Environ Sci 12(1):344–350

    Article  CAS  Google Scholar 

  44. Du Y, Zhu X, Zhou X, Hu L, Dai Z, Bao J (2015) J Mater Chem A 3(13):6787–6791

    Article  CAS  Google Scholar 

  45. Zhu Y, Xu X, Chen G, Zhong Y, Cai R, Li L, Shao Z (2016) Electrochim Acta 211:972–981

    Article  CAS  Google Scholar 

  46. Liu Q, Jin J, Zhang J (2013) ACS Appl Mater Interfaces 5(11):5002–5008

    Article  CAS  PubMed  Google Scholar 

  47. Das S, Sudhagar P, Nagarajan S, Ito E, Lee SY, Kang YS, Choi W (2012) Carbon 50(13):4815–4821

    Article  CAS  Google Scholar 

  48. Shi J, Li X, He G, Zhang L, Li M (2015) J Mater Chem A 3(41):20619–20626

    Article  CAS  Google Scholar 

  49. Zeng W, Zhang G, Wu X, Zhang K, Zhang H, Hou S, Li C, Wang T (2015) J Mater Chem A 3(47):24033–24040

    Article  CAS  Google Scholar 

  50. Zhu L, Susac D, Teo M, Wong KC, Wong PC, Parsons RR, Bizzotto D, Mitchell KAR, Campbell SA (2008) J Catal 258(1):235–242

    Article  CAS  Google Scholar 

  51. Higgins DC, Hassan FM, Seo MH, Choi JY, Hoque MA, Lee DU, Chen Z (2015) J Mater Chem A 3(12):6340–6350

    Article  CAS  Google Scholar 

  52. Xie K, Li L, Deng X, Zhou W, Shao Z (2017) J Alloys Compd 726:394–402

    Article  CAS  Google Scholar 

  53. Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F (2017) Adv Mater 29(48):1606823

    Article  CAS  Google Scholar 

  54. Wang J, Li S, Zhao Y, Shi J, Lv L, Wang H, Zhang Z, Feng W (2018) RSC Adv 8(12):6660–6666

    Article  CAS  Google Scholar 

  55. Kolosnitsyn VS, Kuzmina EV, Karaseva EV, Mochalov SE (2011) J Power Sources 196(3):1478–1482

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11264023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangjun Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, W., Feng, W., Wang, S. et al. Electrocatalysis of polysulfide conversion via sulfur–cobalt CoS2 on a carbon nanotube surface as a cathode for high-performance lithium–sulfur batteries. J Solid State Electrochem 23, 2097–2105 (2019). https://doi.org/10.1007/s10008-019-04301-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04301-w

Keywords

Navigation