Skip to main content

Advertisement

Log in

In situ X-ray photoelectron spectroscopy investigation of the solid electrolyte interphase in a Li/Li6.4Ga0.2La3Zr2O12/LiFePO4 all-solid-state battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The fundamental understanding of the solid electrolyte/electrode interphase during charge and discharge is promising for the development of all-solid-state batteries. Here, we employ a solid-state Li/Li6.4Ga0.2La3Zr2O12/LiFePO4 cell and study in situ the electrolyte/anode and electrolyte/cathode interphase as a function of applied potential under ultra-high vacuum using X-ray photoelectron spectroscopy. An ultra-thin interfacial passivation layer is formed at the Li/Ga-doped LLZO interphase, which inhibits the Ga-LLZO from being further reduced by Li. During charging, the oxidation reaction of Li with Ga-LLZO still occurs, which is evidenced by the broadening of the full width at half maximum (FWHM) and shifting of the Li 1s peak towards lower binding energies and the increment of Li2O peak intensity in the O 1s range. The Ga-LLZO solid electrolyte/LiFePO4 cathode interphase was also studied by in situ XPS under UHV. The deintercalation of Li+ ion is evidenced by the broadening and shifting of Fe 2p peak during charging. Other components shift by the same values as the applied potential. These results indicate good reversibility of the LiFePO4/Ga-LLZO interphase upon charge/discharge. The long-term stability of the LiFePO4/Ga-LLZO interphase was also examined during charging/discharging for 100 cycles. These insights provide a new perspective for understanding of the solid electrolyte interphase, which enables high energy density, long-term stability, and safety for next-generation batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zheng F, Kotobuki M, Song S, Lai MO, Lu L (2018) Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources 389:198–213

    Article  CAS  Google Scholar 

  2. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386

    Article  CAS  Google Scholar 

  3. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540

    Article  CAS  Google Scholar 

  4. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43(13):4714–4727

    Article  CAS  Google Scholar 

  5. Oudenhoven JFM, Baggetto L, Notten PHL (2011) All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv Energy Mater 1(1):10–33

    Article  CAS  Google Scholar 

  6. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10(9):682–686

    Article  CAS  Google Scholar 

  7. Bron P, Johansson S, Zick K, Schmedt auf der Günne J, Dehnen S, Roling B (2013) Li10SnP2S12: an affordable lithium superionic conductor. J Am Chem Soc 135(42):15694–15697

    Article  CAS  Google Scholar 

  8. Cussen EJ (2010) Structure and ionic conductivity in lithium garnets. J Mater Chem 20(25):5167–5173

    Article  CAS  Google Scholar 

  9. Thangadurai V, Kaack H, Weppner WJF (2003) Novel fast Lithiumlion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc 86(3):437–440

    Article  CAS  Google Scholar 

  10. Percival J, Kendrick E, Smith RI, Slater PR (2009) Cation ordering in Li containing garnets: synthesis and structural characterisation of the tetragonal system, Li7La3Sn2O12. Dalton Trans (26):5177–5181. https://doi.org/10.1039/B907331K

  11. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778–7781

    Article  CAS  Google Scholar 

  12. Ramzy A, Thangadurai V (2010) Tailor-made development of fast Li ion conducting garnet-like solid electrolytes. ACS Appl Mater Interfaces 2(2):385–390

    Article  CAS  Google Scholar 

  13. Awaka J, Kijima N, Hayakawa H, Akimoto J (2009) Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem 182(8):2046–2052

    Article  CAS  Google Scholar 

  14. Yang SH, Kim MY, Kim DH, Jung HY, Ryu HM, Han JH, Lee MS, Kim H-S (2017) Ionic conductivity of Ga-doped LLZO prepared using Couette–Taylor reactor for all-solid lithium batteries. J Ind Eng Chem 56:422–427

    Article  CAS  Google Scholar 

  15. Ohta S, Kobayashi T, Asaoka T (2011) High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X=0–2). J Power Sources 196(6):3342–3345

    Article  CAS  Google Scholar 

  16. Li Y, Wang C-A, Xie H, Cheng J, Goodenough JB (2011) High lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochem Commun 13(12):1289–1292

    Article  CAS  Google Scholar 

  17. Kumazaki S, Iriyama Y, Kim K-H, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochem Commun 13(5):509–512

    Article  CAS  Google Scholar 

  18. Luntz AC, Voss J, Reuter K (2015) Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 6(22):4599–4604

    Article  CAS  Google Scholar 

  19. Fu K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey SD, Dai J, Chen Y, Mo Y, Wachsman E, Hu L (2017) Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 3(4):e1601659

    Article  Google Scholar 

  20. Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K, Pastel G, Lin C-F, Mo Y, Wachsman ED, Hu L (2017) Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater 29:1606042

    Article  Google Scholar 

  21. Tsai C-L, Roddatis V, Chandran CV, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O (2016) Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces 8(16):10617–10626

    Article  CAS  Google Scholar 

  22. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB (2016) Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 138(30):9385–9388

    Article  CAS  Google Scholar 

  23. Wu X, Villevieille C, Novák P, El Kazzi M (2018) Monitoring the chemical and electronic properties of electrolyte–electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy. Phys Chem Chem Phys 20(16):11123–11129

    Article  CAS  Google Scholar 

  24. Koerver R, Walther F, Aygün I, Sann J, Dietrich C, Zeier WG, Janek J (2017) Redox-active cathode interphases in solid-state batteries. J Mater Chem A 5(43):22750–22760

    Article  CAS  Google Scholar 

  25. Wood KN, Teeter G (2018) XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl Energy Mater 1(9):4493–4504

    Article  CAS  Google Scholar 

  26. Tonti D, Pettenkofer C, Jaegermann W (2004) Origin of the electrochemical potential in intercalation electrodes: experimental estimation of the electronic and ionic contributions for Na intercalated into TiS2. J Phys Chem B 108(41):16093–16099

    Article  CAS  Google Scholar 

  27. Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen JL (2012) Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12. Mater Chem Phys 134(2-3):571–575

    Article  CAS  Google Scholar 

  28. Wu J-F, Chen E-Y, Yu Y, Liu L, Wu Y, Pang WK, Peterson VK, Guo X (2017) Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl Mater Interfaces 9(2):1542–1552

    Article  CAS  Google Scholar 

  29. Rettenwander D, Redhammer G, Preishuber-Pflügl F, Cheng L, Miara L, Wagner R, Welzl A, Suard E, Doeff MM, Wilkening M, Fleig J, Amthauer G (2016) Structural and electrochemical consequences of Al and Ga cosubstitution in Li7La3Zr2O12 solid electrolytes. Chem Mater 28(7):2384–2392

    Article  CAS  Google Scholar 

  30. Bernuy-Lopez C, Manalastas W, Lopez del Amo JM, Aguadero A, Aguesse F, Kilner JA (2014) Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem Mater 26(12):3610–3617

    Article  CAS  Google Scholar 

  31. Sharafi A, Yu S, Naguib M, Lee M, Ma C, Meyer HM, Nanda J, Chi M, Siegel DJ, Sakamoto J (2017) Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. J Mater Chem A 5(26):13475–13487

    Article  CAS  Google Scholar 

  32. Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M (2014) The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 16(34):18294–18300

    Article  CAS  Google Scholar 

  33. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257(7):2717–2730

    Article  CAS  Google Scholar 

  34. Rho Y-H, Nazar LF, Perry L, Ryan D (2007) Surface chemistry of LiFePO4 studied by Mössbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties. J Electrochem Soc 154(4):A283–A289

    Article  CAS  Google Scholar 

  35. Castro L, Dedryvère R, El Khalifi M, Lippens PE, Bréger J, Tessier C, Gonbeau D (2010) The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS. J Phys Chem C 114(41):17995–18000

    Article  CAS  Google Scholar 

  36. Yao KPC, Kwabi DG, Quinlan RA, Mansour AN, Grimaud A, Lee Y-L, Lu Y-C, Shao-Horn Y (2013) Thermal stability of Li2O2 and Li2O for Li-air batteries: in situ XRD and XPS studies. J Electrochem Soc 160(6):A824–A831

    Article  CAS  Google Scholar 

  37. Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More KL, Dudney NJ, Chi M (2016) Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy. Nano Lett 16(11):7030–7036

    Article  CAS  Google Scholar 

  38. Dedryvère R, Maccario M, Croguennec L, Le Cras F, Delmas C, Gonbeau D (2008) X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials. Chem Mater 20(22):7164–7170

    Article  Google Scholar 

  39. Castro L, Dedryvère R, Ledeuil J-B, Bréger J, Tessier C, Gonbeau D (2012) Aging mechanisms of LiFePO4 // graphite cells studied by XPS: redox reaction and electrode/electrolyte interfaces. J Electrochem Soc 159(4):A357–A363

    Article  CAS  Google Scholar 

  40. Miara LJ, Richards WD, Wang YE, Ceder G (2015) First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets. Chem Mater 27(11):4040–4047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank a joint project funded by National Natural Science Foundation of China (NSFC) and Deutsche Forschungsgemeinschaft (DFG) (EN 370/28-1) and the National Natural Science Foundation of China (No.51761135123).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Liu, Yao Li or Frank Endres.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, G., Borodin, A. et al. In situ X-ray photoelectron spectroscopy investigation of the solid electrolyte interphase in a Li/Li6.4Ga0.2La3Zr2O12/LiFePO4 all-solid-state battery. J Solid State Electrochem 23, 2107–2117 (2019). https://doi.org/10.1007/s10008-019-04296-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04296-4

Navigation