CuFeS2 as an anode material with an enhanced electrochemical performance for lithium-ion batteries fabricated from natural ore chalcopyrite

  • Jiahui Zhou
  • Feng Jiang
  • Sijie Li
  • Zhijie Xu
  • Wei SunEmail author
  • Xiaobo JiEmail author
  • Yue YangEmail author
Original Paper


Considering serious pollution from the traditional chemical synthesis process, the resource-rich, clean electrode materials are greatly desired. Conventional electrochemical performance improvement methods, such as quantum dot or coating, are complicated and costly. In this study, CuFeS2 with an enhanced cycle performance is prepared from natural ore chalcopyrite through simple flotation and acid leaching. We obtain micro-sized CuFeS2 with high yield and purity. Electrochemical measurement shows that the natural chalcopyrite with an EDD-S electrolyte displays a high initial charge capacity (992 mAh·g−1 at the initial discharge current density of 0.2 C), an excellent rate performance, and good cycle property. The discharge capacities are approximately 870, 850, 830, 800, 750, and 680 mAh·g−1 at current densities of 0.1, 0.2, 0.3, 0.5, 1, and 2 C, respectively. When the current density is reduced back to 0.1 C, the reversible capacity can recover to 860 mAh·g−1, the cyclability is impressive (initial capacity of 700 mAh·g−1 and 660 mAh·g−1 maintained for 1000 cycles at a high current density of 2 C, corresponding to an excellent capacity retention of 94% after 1000 cycles).

Graphical abstract


Natural chalcopyrite Lithium-ion battery Anode material Electrochemical properties Electrolyte 


Funding information

This work was financially supported by the National Natural Science Foundation of China (51704330, 51622406, 21673298, and 21473258).

Supplementary material

10008_2019_4284_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 13 kb)


  1. 1.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  2. 2.
    Evarts EC (2015) Lithium batteries: to the limits of lithium. Nature 526(7575):S93–S95CrossRefGoogle Scholar
  3. 3.
    Yang Y, YongHuang G, Sun H, Ahmad M, Mou Q, Zhang H (2018) Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery. J Colloid Interface Sci 529:357–365CrossRefGoogle Scholar
  4. 4.
    Wen Y, He K, Zhu YJ, Han FD, Xu YH, Matsuda I, Ishii Y, Cumings J, Wang CS (2015) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033CrossRefGoogle Scholar
  5. 5.
    Zhang L, Sun D, Kang J, Wang H-T, Hsieh S-H, Pong W-F, Bechtel HA, Feng J, Wang L-W, Cairns EJ, Guo J (2018) Tracking the chemical and structural evolution of the TiS2 electrode in the lithium-ion cell using operando X-ray absorption spectroscopy. Nano Lett 18(7):4506–4515CrossRefGoogle Scholar
  6. 6.
    Ma L, Zhao B, Wang X, Yang J, Zhang X, Zhou Y, Chen J (2018) MoS2 nanosheets vertically grown on carbonized corn stalks as lithium-ion battery anode. ACS Appl Mater Interfaces 10(26):22067–22073CrossRefGoogle Scholar
  7. 7.
    Yan L, Luo N, Kong W, Luo S, Wu H, Jiang K, Li Q, Fan S, Duan W, Wang J (2018) Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J Power Sources 389:169–177CrossRefGoogle Scholar
  8. 8.
    Li S, Tang H, Ge P, Jiang F, Zhou J, Zhang C, Hou H, Sun W, Ji X (2018) Electrochemical investigation of natural ore molybdenite (MoS2) as a first-hand anode for lithium storages. ACS Appl Mater Interfaces 10(7):6378–6389CrossRefGoogle Scholar
  9. 9.
    Walter M, Zuend T, Kovalenko MV (2015) Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7(20):9158–9163CrossRefGoogle Scholar
  10. 10.
    Jun L, Yuren W, Yi W, Peter A, van Aken J, Maier YY (2014) Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv Mater 26(34):6025–6030CrossRefGoogle Scholar
  11. 11.
    Xu X, Liu J, Liu Z (2017) Robust pitaya-structured pyrite as high energy density cathode for high rate lithium batteries. ACS Nano acsnano 11:7b03530Google Scholar
  12. 12.
    Meng X, Deng D (2016) Trash to treasure: waste eggshells used as reactor and template for synthesis of Co9S8 nanorod arrays on carbon fibers for energy storage. Chem Mater 28(11):3897–3904CrossRefGoogle Scholar
  13. 13.
    Ghezelbash A, Sigman MB, Korgel BA (2004) Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms. Nano Lett 4(4):537–542CrossRefGoogle Scholar
  14. 14.
    Jin C, Fu L, Zhu J, Yang W, Li D, Zhou L (2018) A hierarchical carbon modified nano-NiS2 cathode with high thermal stability for a high energy thermal battery. Mater Chem A 6(16):7123–7132CrossRefGoogle Scholar
  15. 15.
    Du X, Zhao H, Zhang Z, Lu Y, Gao C, Li Z, Teng Y, Zhao L, Swierczek K (2017) Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes. Electrochim Acta 225:129–138CrossRefGoogle Scholar
  16. 16.
    Liu Z, Deng H, Mukherjee PP (2015) Evaluating pristine and modified SnS2 as a lithium-ion battery anode: a first-principles study. ACS Appl Mater Interfaces 7(7):4000–4009CrossRefGoogle Scholar
  17. 17.
    Zhang L, Huang Y, Zhang Y, Fan W, Liu T (2015) Three dimensional nanoporous graphene-carbon nanotube hybrid frameworks for confinement of SnS2 nanosheets: flexible and binder-free papers with highly reversible lithium storage. ACS Appl Mater Interfaces 7(50):27823–27830CrossRefGoogle Scholar
  18. 18.
    Ding W, Wang X, Peng HF, Hu LN (2015) Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery. Mater Chem Phys 137:872–876CrossRefGoogle Scholar
  19. 19.
    Wang Y, Li X, Zhang Y, He X, Zha J (2015) Ether based electrolyte improves the performance of CuFeS2 spike-like nanorods as a novel anode for lithium storage. Electrochim Acta 158:368–373CrossRefGoogle Scholar
  20. 20.
    Wu X, Zhao Y, Yang C, He G (2015) PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries. J Mater Sci 50(12):4250–4257CrossRefGoogle Scholar
  21. 21.
    Guo P, Song H, Liu Y, Wang C (2017) CuFeS2 quantum dots anchored in carbon frame: superior lithium storage performance and the study of electrochemical mechanism. ACS Appl Mater Interfaces 9(37):31752–31762CrossRefGoogle Scholar
  22. 22.
    Mikhlina YL, Tomashevicha YV, Asanovb IP, Okotrubb AV, Varnekb VA, Vyalik DV (2014) Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions. Appl Surf Sci 225:395–409CrossRefGoogle Scholar
  23. 23.
    Peters JF, Baumann M, Zimmermann B, Braun J, Weil M (2017) The environmental impact of Li-Ion batteries and the role of key parameters. Renewable Sustainable Energy Rev 67:491–506CrossRefGoogle Scholar
  24. 24.
    Liang Y, Su J, Xi B, Yu Y, Ji D, Sun Y, Cui C, Zhu J (2017) Life cycle assessment of lithium-ion batteries for greenhouse gas emission. Resour Conserv Recycl 117:285–293CrossRefGoogle Scholar
  25. 25.
    Mikhlin Y, Karacharov A, Tomashevich Y, Shchukarev A (2016) Cryogenic XPS study of fast-frozen sulfide minerals: flotation-related adsorption of n-butyl xanthate and beyond. J Electron Spectrosc Relat Phenom 206:65–73CrossRefGoogle Scholar
  26. 26.
    Boekemaa C, Krupski AM, Varasteh M, Parvin K, Til F, Woude F, Sawatzky GA (2004) Cu and Fe valence states in CuFeS2. J Magn Magn Mater 276:559–561CrossRefGoogle Scholar
  27. 27.
    Ghahremaninezhad A, Dixon DG, Asselin E (2013) Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochim Acta 87:97–112CrossRefGoogle Scholar
  28. 28.
    Siriwardene RV, Cook JM (1985) Iron (II) sulfide. Colloid Interface Sci 108:414CrossRefGoogle Scholar
  29. 29.
    Panzuner G, Egert B (1984) Iron sulfide (FeS2). Surf Sci 144:651CrossRefGoogle Scholar
  30. 30.
    McIntyre NS, Zetaruk DG (1977) Iron (III) hydroxide oxide. Anal Chem 49(11):1521–1529CrossRefGoogle Scholar
  31. 31.
    Zhao H, Wang J, Gan X, Hu M, Zhang E, Qin W, Qiu G (2015) Cooperative bioleaching of chalcopyrite and silver-bearing tailing by mixed moderately thermophilic culture: an emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis. Miner Eng 81:29–39CrossRefGoogle Scholar
  32. 32.
    Wang J, Gan X, Zhao H, Hu M, Li K, Qin W, Qiu G (2016) Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis. Miner Eng 98:264–278CrossRefGoogle Scholar
  33. 33.
    Zhao Q, Liu W, Wei D, Wang W, Cui B, Liu W (2018) Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant. Miner Eng 115:44–52CrossRefGoogle Scholar
  34. 34.
    Park Y, Shin SH, Hwang H, Lee SM, Kim SP, Choi HC, Jung YM (2014) Investigation of solid electrolyte interface (SEI) film on LiCoO2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS). J Mol Struct 1069:157–163CrossRefGoogle Scholar
  35. 35.
    Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, Michaelis A, Teltevskij V, Mikhailova D, Oswald S, Klose M, Stephani G, Hauser R, Eckert J, Giebeler L (2017) Lifetime vs. rate capability: understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes. Energy Storage Mater 6:26–35CrossRefGoogle Scholar
  36. 36.
    Choi N-S, Yew KH, Lee KY, Sung M, Kim H, Kim S-S (2006) Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 161(2):1254–1259CrossRefGoogle Scholar
  37. 37.
    Sim S, Oh P, Park S, Cho J (2013) Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries. Adv Mater 25(32):4498–4503CrossRefGoogle Scholar
  38. 38.
    Han H-B, Zhou S-S, Zhang D-J, Feng S-W, Li L-F, Liu K, Feng W-F, Nie J, Li H, Huang X-J, Armand M, Zhou Z-B (2011) Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. J Power Sources 196(7):3623–3632CrossRefGoogle Scholar
  39. 39.
    Takekawa T, Kamiguchi K, Imai H, Hatano M (2015) Physicochemical and electrochemical properties of the organic solvent electrolyte with lithium bis(fluorosulfonyl)imide (LiFSI) as lithium-ion conducting salt for lithium-ion batteries. ECS Trans 64(24):11–16CrossRefGoogle Scholar
  40. 40.
    Ding W, Wang X, Peng H, Hu L (2013) Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium-ion battery. Mater Chem Phys 137(3):872–876CrossRefGoogle Scholar
  41. 41.
    Liu Y, Jin B, Zhu Y-F, Ma XZ, Lang XY (2015) Synthesis of Cu2S/carbon composites with improved lithium storage performance. Int J Hydrog Energy 40(1):670–674CrossRefGoogle Scholar
  42. 42.
    Meng X, Riha SC, Libera JA, Wu Q, Wang H-H, Martinson ABF, Elam JW (2015) Tunable core-shell single-walled carbon nanotube-Cu2S networked nanocomposites as high-performance cathodes for lithium-ion batteries. J Power Sources 280:621–629CrossRefGoogle Scholar
  43. 43.
    Lai C-H, Huang K-W, Cheng J-H, Lee C-Y, Hwang B-J, Chen L-J (2010) Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J Mater Chem 20(32):6638–6645CrossRefGoogle Scholar
  44. 44.
    Xu S, Hessel CM, Ren H, Yu R, Jin Q, Yang M, Zhao H, Wang D (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7(2):632–637CrossRefGoogle Scholar
  45. 45.
    Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17(5):582–586CrossRefGoogle Scholar
  46. 46.
    Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4):3333–3338CrossRefGoogle Scholar
  47. 47.
    Li H, Zhu X, Sitinamaluwa H, Wasalathilake K, Xu L, Zhang S, Yan C (2017) Graphene oxide wrapped Fe2O3 as a durable anode material for high-performance lithium-ion batteries. J Alloys Compd 714:425–432CrossRefGoogle Scholar
  48. 48.
    Qina A, Ji J, Du R, Tian N, Liao L, Zhang K, Wei C (2018) Hydrothermal synthesis and electrochemical performance of CuS@sisal fiber carbon composite lithium-ion battery anodes. Compos Commun 7:47–50CrossRefGoogle Scholar
  49. 49.
    Tao Y, Rui K, Wen Z, Wang Q, Jin J, Zhang T, Wu T (2016) FeS2 microsphere as cathode material for rechargeable lithium batteries. Solid State Ionics 290:47–52CrossRefGoogle Scholar
  50. 50.
    Hou H, Jing M, Huang Z, Yang Y, Zhang Y, Che J, Wu Z, Ji X (2015) One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 7(34):19362–19369CrossRefGoogle Scholar
  51. 51.
    Zhu Y, Wen Y, Fan X, Gao T, Han F, Luo C, Liou SC, Wang C (2015) Red phosphorus single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9(3):3254–3264CrossRefGoogle Scholar
  52. 52.
    Chang K, Geng D, Li X, Yang J, Tang Y, Cai M, Li R, Sun X (2013) Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv Energy Mater 3(7):839–844CrossRefGoogle Scholar
  53. 53.
    Liu X, Niu C, Meng J, Xu X, Wang X, Wen B, Guo R, Mai L (2016) Gradient-temperature hydrothermal fabrication of hierarchical Zn2SnO4 hollow boxes stimulated by thermodynamic phase transformation. Mater Chem 4(37):14095–14100CrossRefGoogle Scholar
  54. 54.
    Li S, Ge P, Zhang C, Sun W, Hou H, Ji X (2017) The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: towards long-time cycling and superior rate sodium-ion battery cathode. J Power Sources 366:249–258CrossRefGoogle Scholar
  55. 55.
    Ge P, Hou H, Ji X, Huang Z, Li S, Huang L (2018) Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Mater Chem Phys 203:185–192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  3. 3.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations