Abstract
A versatile and low-cost methodology for fabricating free-standing carbon graphite (CG)/SnO2/single-walled carbon nanotube (SWCNT) composites as anode material for lithium-ion batteries is described. CG–SnO2 (1:1) was ball milled and the composite obtained was dispersed with different ratios (wt%) of SWCNT. Then, the flexible composite CG–SnO2–SWCNT was successfully manufactured by a simple vacuum filtration procedure. Electrochemical measurements demonstrated that the anode composite paper with 50 wt% CG–SnO2 and 50 wt% SWCNT showed excellent retention of a high specific capacity (318 mA h g−1) after 30 cycles at current density of 0.08 mA cm−2, which was twice that of SWCNT paper (155 mA h g−1). This SWCNT–CG–SnO2 combination is very promising, since the SWCNT could act as a flexible mechanical support, while CG–SnO2 provides high capacity. This paper presents an inexpensive methodology that may be applied to the design of electrodes and evaluates the interaction between SnO2 and carbon materials as anode in lithium-ion battery systems.
Similar content being viewed by others
References
Tarascon JM, Armand M (2001) Nature 414(6861):359–367
Zubi G, Dufo-Lopez R, Carvalho M, Pasaoglu G (2018) Renew Sust Energ Rev 89:292–308
Du Y, Gao T, Ma W, Li H (2018) Chem Phys Lett 712:7–12
Golmohammadzadeh R, Faraji F, Rashchi F (2018) Resour Conserv Recycl 136:418–435
Castaneda LF, Walsh FC, Nava JL, de Leon CP (2017) Electrochim Acta 258:1115–1139
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH (2018) Prog Energ Combust 64:219–253
Zhang D, Zhou Y, Liu CH, Fan SS (2016) Nanoscale 8(21):11161–11167
Montoro LA, Matsubara EY, Rosolen JM (2014) J Power Sources 257:205–212
Chew SY, Ng SH, Wang JZ, Novak P, Krumeich F, Chou SL, Chen J, Liu HK (2009) Carbon 47(13):2976–2983
Wang L, Wei Z, Mao M, Wang H, Li Y, Ma J (2019) Energy Storage Materials 16:434–454
Chou SL, Wang JZ, Zhong C, Rahman MM, Liu HK, Dou SX (2009) Electrochim Acta 54(28):7519–7524
Deng YF, Fang CC, Chen GH (2016) J Power Sources 304:81–101
Wang XY, Zhou XF, Yao K, Zhang JG, Liu ZP (2011) Carbon 49(1):133–139
Zhang CF, Peng X, Guo ZP, Cai CB, Chen ZX, Wexler D, Li S, Liu HK (2012) Carbon 50(5):1897–1903
Qin J, Zhao NQ, Shi CS, Liu EZ, He F, Ma LY, Li QY, Li JJ, He CN (2017) J Mater Chem A 5(22):10946–10956
Guo Q, Zheng Z, Gao HL, Ma J, Qin X (2013) J Power Sources 240:149–154
Wang MS, Wang ZQ, Yang ZL, Huang Y, Zheng JM, Li X (2017) Electrochim Acta 240:7–15
Ren J, Ren R-P, Lv Y-K (2018) Chem Eng J 353:419–424
Ng SH, Wang J, Guo ZP, Wang GX, Liu HK (2005) Electrochim Acta 51(1):23–28
Feng CQ, Li L, Guo ZP, Li H (2010) J Alloys Compd 504(2):457–461
Maheshwari PH, Nithya C, Jain S, Mathur RB (2013) Electrochim Acta 92:55–63
Saleh TA, Agarwal S, Gupta VK (2011) Applied Catalysis B 106:46–53
Liu RL, Chi YQ, Fang L, Tang ZS, Yi X (2014) J Nanosci Nanotechno 14(2):1647–1657
Zhang H, Chen K, He Y, Zhu Y, Chen Y, Wu C, Wang J, Liao JH, Liu SH (2001) J Phys Chem Solids 62(11):2007–2010
de la Chapelle ML, Stéphan C, Nguyen TP, Lefrant S, Journet C, Bernier P, Munoz E, Benito A, Maser WK, Martinez MT, de la Fuente GF, Guillard T, Flamant G, Alvarez L, Laplaze D (1999) Synth Met 103(1-3):2510–2512
Chipara DM, Macossay J, Ybarra AVR, Chipara AC, Eubanks TM, Chipara M (2013) Appl Surf Sci 275:23–27
Janas D, Stando G (2017) Sci Rep 7(1):12274
Zhang S, Yue L, Wang M, Feng Y, Li Z, Mi J (2018) Solid State Ionics 323:105–111
Kim JH, Choi SM, Nam SH, Seo MH, Choi SH, Kim WB (2008) Applied Catalysis B 82(1-2):89–102
Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Perkin-Elmer Corporation, Minnesota
Wang Z, Liang ZY, Wang B, Zhang C, Kramer L (2004) Composites Part A 35(10):1225–1232
Song HW, Li N, Cui H, Wang CX (2014) Electrochim Acta 120:46–51
Aurbach D, Koltypin M, Teller H (2002) Langmuir 18(23):9000–9009
Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) J Electrochem Soc 147(8):2845–2852
Yuan L, Guo ZP, Konstantinov K, Wang JZ, Liu HK (2006) Electrochim Acta 51(18):3680–3684
Noerochim L, Wang JZ, Chou SL, Wexler D, Liu HK (2012) Carbon 50(3):1289–1297
Wang GX, Ahn JH, Lindsay MJ, Sun L, Bradhurst DH, Dou SX, Liu HK (2001) J Power Sources 97(8):211–215
Huang XK, Cui SM, Chang JB, Hallac PB, Fell CR, Luo YT, Metz B, Jiang JW, Hurley PT, Chen JH (2015) Angew Chem Int Edit 54(5):1490–1493
Cheng Y, Yi Z, Wang CL, Wu YM, Wang LM (2017) Chem Eng J 330:1035–1043
Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Carbon 37(1):61–69
Lee S, Cho D, Jeong Y (2015) Fiber Polym 16(7):1600–1604
Aurbach D (2000) J Power Sources 89(2):206–218
Guo ZP, Zhao ZW, Liu HK, Dou SX (2005) Carbon 43(7):1392–1399
Acknowledgements
The authors are grateful to Professors Hua Kun Liu, Jiazhao Wang and Shulei Chou of the University of Wollongong—Institute for Superconducting and Electronic Materials—for their assistance in this work. The authors thank the Laboratory of Structural Characterization (LCE/DEMa/UFSCar) for the general facilities and the Professor Valmor Mastelato for the XPS measures.
Funding
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and by Conselho Nacional de Pesquisa e Desenvolvimento (CNPq, #167430/2017-3).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bento, F.R., Corradini, P.G. & Mascaro, L.H. Inexpensive methodology for obtaining flexible SnO2-single-walled carbon nanotube composites for lithium-ion battery anodes. J Solid State Electrochem 23, 1861–1870 (2019). https://doi.org/10.1007/s10008-019-04283-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10008-019-04283-9