Skip to main content
Log in

Inexpensive methodology for obtaining flexible SnO2-single-walled carbon nanotube composites for lithium-ion battery anodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A versatile and low-cost methodology for fabricating free-standing carbon graphite (CG)/SnO2/single-walled carbon nanotube (SWCNT) composites as anode material for lithium-ion batteries is described. CG–SnO2 (1:1) was ball milled and the composite obtained was dispersed with different ratios (wt%) of SWCNT. Then, the flexible composite CG–SnO2–SWCNT was successfully manufactured by a simple vacuum filtration procedure. Electrochemical measurements demonstrated that the anode composite paper with 50 wt% CG–SnO2 and 50 wt% SWCNT showed excellent retention of a high specific capacity (318 mA h g−1) after 30 cycles at current density of 0.08 mA cm−2, which was twice that of SWCNT paper (155 mA h g−1). This SWCNT–CG–SnO2 combination is very promising, since the SWCNT could act as a flexible mechanical support, while CG–SnO2 provides high capacity. This paper presents an inexpensive methodology that may be applied to the design of electrodes and evaluates the interaction between SnO2 and carbon materials as anode in lithium-ion battery systems.

Representation of fabrication process of carbon graphite - SnO2 - single-walled carbon nanotube composite paper and their flexibility and morphology for anode in lithium-ion battery

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414(6861):359–367

    Article  CAS  PubMed  Google Scholar 

  2. Zubi G, Dufo-Lopez R, Carvalho M, Pasaoglu G (2018) Renew Sust Energ Rev 89:292–308

    Article  Google Scholar 

  3. Du Y, Gao T, Ma W, Li H (2018) Chem Phys Lett 712:7–12

    Article  CAS  Google Scholar 

  4. Golmohammadzadeh R, Faraji F, Rashchi F (2018) Resour Conserv Recycl 136:418–435

    Article  Google Scholar 

  5. Castaneda LF, Walsh FC, Nava JL, de Leon CP (2017) Electrochim Acta 258:1115–1139

    Article  CAS  Google Scholar 

  6. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH (2018) Prog Energ Combust 64:219–253

    Article  Google Scholar 

  7. Zhang D, Zhou Y, Liu CH, Fan SS (2016) Nanoscale 8(21):11161–11167

    Article  CAS  PubMed  Google Scholar 

  8. Montoro LA, Matsubara EY, Rosolen JM (2014) J Power Sources 257:205–212

    Article  CAS  Google Scholar 

  9. Chew SY, Ng SH, Wang JZ, Novak P, Krumeich F, Chou SL, Chen J, Liu HK (2009) Carbon 47(13):2976–2983

    Article  CAS  Google Scholar 

  10. Wang L, Wei Z, Mao M, Wang H, Li Y, Ma J (2019) Energy Storage Materials 16:434–454

    Article  Google Scholar 

  11. Chou SL, Wang JZ, Zhong C, Rahman MM, Liu HK, Dou SX (2009) Electrochim Acta 54(28):7519–7524

    Article  CAS  Google Scholar 

  12. Deng YF, Fang CC, Chen GH (2016) J Power Sources 304:81–101

    Article  CAS  Google Scholar 

  13. Wang XY, Zhou XF, Yao K, Zhang JG, Liu ZP (2011) Carbon 49(1):133–139

    Article  CAS  Google Scholar 

  14. Zhang CF, Peng X, Guo ZP, Cai CB, Chen ZX, Wexler D, Li S, Liu HK (2012) Carbon 50(5):1897–1903

    Article  CAS  Google Scholar 

  15. Qin J, Zhao NQ, Shi CS, Liu EZ, He F, Ma LY, Li QY, Li JJ, He CN (2017) J Mater Chem A 5(22):10946–10956

    Article  CAS  Google Scholar 

  16. Guo Q, Zheng Z, Gao HL, Ma J, Qin X (2013) J Power Sources 240:149–154

    Article  CAS  Google Scholar 

  17. Wang MS, Wang ZQ, Yang ZL, Huang Y, Zheng JM, Li X (2017) Electrochim Acta 240:7–15

    Article  CAS  Google Scholar 

  18. Ren J, Ren R-P, Lv Y-K (2018) Chem Eng J 353:419–424

    Article  CAS  Google Scholar 

  19. Ng SH, Wang J, Guo ZP, Wang GX, Liu HK (2005) Electrochim Acta 51(1):23–28

    Article  CAS  Google Scholar 

  20. Feng CQ, Li L, Guo ZP, Li H (2010) J Alloys Compd 504(2):457–461

    Article  CAS  Google Scholar 

  21. Maheshwari PH, Nithya C, Jain S, Mathur RB (2013) Electrochim Acta 92:55–63

    Article  CAS  Google Scholar 

  22. Saleh TA, Agarwal S, Gupta VK (2011) Applied Catalysis B 106:46–53

    CAS  Google Scholar 

  23. Liu RL, Chi YQ, Fang L, Tang ZS, Yi X (2014) J Nanosci Nanotechno 14(2):1647–1657

    Article  CAS  Google Scholar 

  24. Zhang H, Chen K, He Y, Zhu Y, Chen Y, Wu C, Wang J, Liao JH, Liu SH (2001) J Phys Chem Solids 62(11):2007–2010

    Article  CAS  Google Scholar 

  25. de la Chapelle ML, Stéphan C, Nguyen TP, Lefrant S, Journet C, Bernier P, Munoz E, Benito A, Maser WK, Martinez MT, de la Fuente GF, Guillard T, Flamant G, Alvarez L, Laplaze D (1999) Synth Met 103(1-3):2510–2512

    Article  Google Scholar 

  26. Chipara DM, Macossay J, Ybarra AVR, Chipara AC, Eubanks TM, Chipara M (2013) Appl Surf Sci 275:23–27

    Article  CAS  Google Scholar 

  27. Janas D, Stando G (2017) Sci Rep 7(1):12274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang S, Yue L, Wang M, Feng Y, Li Z, Mi J (2018) Solid State Ionics 323:105–111

    Article  CAS  Google Scholar 

  29. Kim JH, Choi SM, Nam SH, Seo MH, Choi SH, Kim WB (2008) Applied Catalysis B 82(1-2):89–102

    Article  CAS  Google Scholar 

  30. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Perkin-Elmer Corporation, Minnesota

    Google Scholar 

  31. Wang Z, Liang ZY, Wang B, Zhang C, Kramer L (2004) Composites Part A 35(10):1225–1232

    Article  CAS  Google Scholar 

  32. Song HW, Li N, Cui H, Wang CX (2014) Electrochim Acta 120:46–51

    Article  CAS  Google Scholar 

  33. Aurbach D, Koltypin M, Teller H (2002) Langmuir 18(23):9000–9009

    Article  CAS  Google Scholar 

  34. Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) J Electrochem Soc 147(8):2845–2852

    Article  CAS  Google Scholar 

  35. Yuan L, Guo ZP, Konstantinov K, Wang JZ, Liu HK (2006) Electrochim Acta 51(18):3680–3684

    Article  CAS  Google Scholar 

  36. Noerochim L, Wang JZ, Chou SL, Wexler D, Liu HK (2012) Carbon 50(3):1289–1297

    Article  CAS  Google Scholar 

  37. Wang GX, Ahn JH, Lindsay MJ, Sun L, Bradhurst DH, Dou SX, Liu HK (2001) J Power Sources 97(8):211–215

    Article  Google Scholar 

  38. Huang XK, Cui SM, Chang JB, Hallac PB, Fell CR, Luo YT, Metz B, Jiang JW, Hurley PT, Chen JH (2015) Angew Chem Int Edit 54(5):1490–1493

    Article  CAS  Google Scholar 

  39. Cheng Y, Yi Z, Wang CL, Wu YM, Wang LM (2017) Chem Eng J 330:1035–1043

    Article  CAS  Google Scholar 

  40. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Carbon 37(1):61–69

    Article  CAS  Google Scholar 

  41. Lee S, Cho D, Jeong Y (2015) Fiber Polym 16(7):1600–1604

    Article  CAS  Google Scholar 

  42. Aurbach D (2000) J Power Sources 89(2):206–218

    Article  CAS  Google Scholar 

  43. Guo ZP, Zhao ZW, Liu HK, Dou SX (2005) Carbon 43(7):1392–1399

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professors Hua Kun Liu, Jiazhao Wang and Shulei Chou of the University of Wollongong—Institute for Superconducting and Electronic Materials—for their assistance in this work. The authors thank the Laboratory of Structural Characterization (LCE/DEMa/UFSCar) for the general facilities and the Professor Valmor Mastelato for the XPS measures.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and by Conselho Nacional de Pesquisa e Desenvolvimento (CNPq, #167430/2017-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia H. Mascaro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bento, F.R., Corradini, P.G. & Mascaro, L.H. Inexpensive methodology for obtaining flexible SnO2-single-walled carbon nanotube composites for lithium-ion battery anodes. J Solid State Electrochem 23, 1861–1870 (2019). https://doi.org/10.1007/s10008-019-04283-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04283-9

Keywords

Navigation